4 resultados para mass transfer models

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerosi incidenti verificatisi negli ultimi dieci anni in campo chimico e petrolchimico sono dovuti all’innesco di sostanze infiammabili rilasciate accidentalmente: per questo motivo gli scenari incidentali legati ad incendi esterni rivestono oggigiorno un interesse crescente, in particolar modo nell’industria di processo, in quanto possono essere causa di ingenti danni sia ai lavoratori ed alla popolazione, sia alle strutture. Gli incendi, come mostrato da alcuni studi, sono uno dei più frequenti scenari incidentali nell’industria di processo, secondi solo alla perdita di contenimento di sostanze pericolose. Questi eventi primari possono, a loro volta, determinare eventi secondari, con conseguenze catastrofiche dovute alla propagazione delle fiamme ad apparecchiature e tubazioni non direttamente coinvolte nell’incidente primario; tale fenomeno prende il nome di effetto domino. La necessità di ridurre le probabilità di effetto domino rende la mitigazione delle conseguenze un aspetto fondamentale nella progettazione dell’impianto. A questo scopo si impiegano i materiali per la protezione passiva da fuoco (Passive Fire Protection o PFP); essi sono sistemi isolanti impiegati per proteggere efficacemente apparecchiature e tubazioni industriali da scenari di incendio esterno. L’applicazione dei materiali per PFP limita l’incremento di temperatura degli elementi protetti; questo scopo viene raggiunto tramite l’impiego di differenti tipologie di prodotti e materiali. Tuttavia l’applicazione dei suddetti materiali fireproofing non può prescindere da una caratterizzazione delle proprietà termiche, in particolar modo della conducibilità termica, in condizioni che simulino l’esposizione a fuoco. Nel presente elaborato di tesi si è scelto di analizzare tre materiali coibenti, tutti appartenenti, pur con diversità di composizione e struttura, alla classe dei materiali inorganici fibrosi: Fibercon Silica Needled Blanket 1200, Pyrogel®XT, Rockwool Marine Firebatt 100. I tre materiali sono costituiti da una fase solida inorganica, differente per ciascuno di essi e da una fase gassosa, preponderante come frazione volumetrica. I materiali inorganici fibrosi rivestono una notevole importanza rispetto ad altri materiali fireproofing in quanto possono resistere a temperature estremamente elevate, talvolta superiori a 1000 °C, senza particolari modifiche chimico-fisiche. Questo vantaggio, unito alla versatilità ed alla semplicità di applicazione, li rende leader a livello europeo nei materiali isolanti, con una fetta di mercato pari circa al 60%. Nonostante l’impiego dei suddetti materiali sia ormai una realtà consolidata nell’industria di processo, allo stato attuale sono disponibili pochi studi relativi alle loro proprietà termiche, in particolare in condizioni di fuoco. L’analisi sperimentale svolta ha consentito di identificare e modellare il comportamento termico di tali materiali in caso di esposizione a fuoco, impiegando nei test, a pressione atmosferica, un campo di temperatura compreso tra 20°C e 700°C, di interesse per applicazioni fireproofing. Per lo studio delle caratteristiche e la valutazione delle proprietà termiche dei tre materiali è stata impiegata principalmente la tecnica Transient Plane Source (TPS), che ha consentito la determinazione non solo della conducibilità termica, ma anche della diffusività termica e della capacità termica volumetrica, seppure con un grado di accuratezza inferiore. I test sono stati svolti su scala di laboratorio, creando un set-up sperimentale che integrasse opportunamente lo strumento Hot Disk Thermal Constants Analyzer TPS 1500 con una fornace a camera ed un sistema di acquisizione dati. Sono state realizzate alcune prove preliminari a temperatura ambiente sui tre materiali in esame, per individuare i parametri operativi (dimensione sensori, tempi di acquisizione, etc.) maggiormente idonei alla misura della conducibilità termica. Le informazioni acquisite sono state utilizzate per lo sviluppo di adeguati protocolli sperimentali e per effettuare prove ad alta temperatura. Ulteriori significative informazioni circa la morfologia, la porosità e la densità dei tre materiali sono state ottenute attraverso stereo-microscopia e picnometria a liquido. La porosità, o grado di vuoto, assume nei tre materiali un ruolo fondamentale, in quanto presenta valori compresi tra 85% e 95%, mentre la frazione solida ne costituisce la restante parte. Inoltre i risultati sperimentali hanno consentito di valutare, con prove a temperatura ambiente, l’isotropia rispetto alla trasmissione del calore per la classe di materiali coibenti analizzati, l’effetto della temperatura e della variazione del grado di vuoto (nel caso di materiali che durante l’applicazione possano essere soggetti a fenomeni di “schiacciamento”, ovvero riduzione del grado di vuoto) sulla conducibilità termica effettiva dei tre materiali analizzati. Analoghi risultati, seppure con grado di accuratezza lievemente inferiore, sono stati ottenuti per la diffusività termica e la capacità termica volumetrica. Poiché è nota la densità apparente di ciascun materiale si è scelto di calcolarne anche il calore specifico in funzione della temperatura, di cui si è proposto una correlazione empirica. I risultati sperimentali, concordi per i tre materiali in esame, hanno mostrato un incremento della conducibilità termica con la temperatura, da valori largamente inferiori a 0,1 W/(m∙K) a temperatura ambiente, fino a 0,3÷0,4 W/(m∙K) a 700°C. La sostanziale similitudine delle proprietà termiche tra i tre materiali, appartenenti alla medesima categoria di materiali isolanti, è stata riscontrata anche per la diffusività termica, la capacità termica volumetrica ed il calore specifico. Queste considerazioni hanno giustificato l’applicazione a tutti i tre materiali in esame dei medesimi modelli per descrivere la conducibilità termica effettiva, ritenuta, tra le proprietà fisiche determinate sperimentalmente, la più significativa nel caso di esposizione a fuoco. Lo sviluppo di un modello per la conducibilità termica effettiva si è reso necessario in quanto i risultati sperimentali ottenuti tramite la tecnica Transient Plane Source non forniscono alcuna informazione sui contributi offerti da ciascun meccanismo di scambio termico al termine complessivo e, pertanto, non consentono una facile generalizzazione della proprietà in funzione delle condizioni di impiego del materiale. La conducibilità termica dei materiali coibenti fibrosi e in generale dei materiali bi-fasici tiene infatti conto in un unico valore di vari contributi dipendenti dai diversi meccanismi di scambio termico presenti: conduzione nella fase gassosa e nel solido, irraggiamento nelle superfici delle cavità del solido e, talvolta, convezione; inoltre essa dipende fortemente dalla temperatura e dalla porosità. Pertanto, a partire dal confronto con i risultati sperimentali, tra cui densità e grado di vuoto, l’obiettivo centrale della seconda fase del progetto è stata la scelta, tra i numerosi modelli a disposizione in letteratura per materiali bi-fasici, di cui si è presentata una rassegna, dei più adatti a descrivere la conducibilità termica effettiva nei materiali in esame e nell’intervallo di temperatura di interesse, fornendo al contempo un significato fisico ai contributi apportati al termine complessivo. Inizialmente la scelta è ricaduta su cinque modelli, chiamati comunemente “modelli strutturali di base” (Serie, Parallelo, Maxwell-Eucken 1, Maxwell-Eucken 2, Effective Medium Theory) [1] per la loro semplicità e versatilità di applicazione. Tali modelli, puramente teorici, hanno mostrato al raffronto con i risultati sperimentali numerosi limiti, in particolar modo nella previsione del termine di irraggiamento, ovvero per temperature superiori a 400°C. Pertanto si è deciso di adottare un approccio semi-empirico: è stato applicato il modello di Krischer [2], ovvero una media pesata su un parametro empirico (f, da determinare) dei modelli Serie e Parallelo, precedentemente applicati. Anch’esso si è rivelato non idoneo alla descrizione dei materiali isolanti fibrosi in esame, per ragioni analoghe. Cercando di impiegare modelli caratterizzati da forte fondamento fisico e grado di complessità limitato, la scelta è caduta sui due recenti modelli, proposti rispettivamente da Karamanos, Papadopoulos, Anastasellos [3] e Daryabeigi, Cunnington, Knutson [4] [5]. Entrambi presentavano il vantaggio di essere stati utilizzati con successo per materiali isolanti fibrosi. Inizialmente i due modelli sono stati applicati con i valori dei parametri e le correlazioni proposte dagli Autori. Visti gli incoraggianti risultati, a questo primo approccio è seguita l’ottimizzazione dei parametri e l’applicazione di correlazioni maggiormente idonee ai materiali in esame, che ha mostrato l’efficacia dei modelli proposti da Karamanos, Papadopoulos, Anastasellos e Daryabeigi, Cunnington, Knutson per i tre materiali analizzati. Pertanto l’obiettivo finale del lavoro è stato raggiunto con successo in quanto sono stati applicati modelli di conducibilità termica con forte fondamento fisico e grado di complessità limitato che, con buon accordo ai risultati sperimentali ottenuti, consentono di ricavare equazioni predittive per la stima del comportamento, durante l’esposizione a fuoco, dei materiali fireproofing in esame. Bologna, Luglio 2013 Riferimenti bibliografici: [1] Wang J., Carson J.K., North M.F., Cleland D.J., A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer 49 (2006) 3075-3083. [2] Krischer O., Die wissenschaftlichen Grundlagen der Trocknungstechnik (The Scientific Fundamentals of Drying Technology), Springer-Verlag, Berlino, 1963. [3] Karamanos A., Papadopoulos A., Anastasellos D., Heat Transfer phenomena in fibrous insulating materials. (2004) Geolan.gr http://www.geolan.gr/sappek/docs/publications/article_6.pdf Ultimo accesso: 1 Luglio 2013. [4] Daryabeigi K., Cunnington G. R., and Knutson J. R., Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulation: Theory and Experimental Validation. Journal of Thermophysics and Heat Transfer 25 (2011) 536-546. [5] Daryabeigi K., Cunnington G.R., Knutson J.R., Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation. Journal of Thermophysics and Heat Transfer. AIAA Early Edition/1 (2012).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A growing interest towards new sources of energy has led in recent years to the development of a new generation of catalysts for alcohol dehydrogenative coupling (ADC). This green, atom-efficient reaction is capable of turning alcohol derivatives into higher value and chemically more attractive ester molecules, and it finds interesting applications in the transformation of the large variety of products deriving from biomass. In the present work, a new series of ruthenium-PNP pincer complexes are investigated for the transformation of 1-butanol, one of the most challenging substrates for this type of reactions, into butyl butyrate, a short-chain symmetrical ester widely used in flavor industries. Since the reaction kinetics depends on hydrogen diffusion, the study aimed at identifying proper reactor type and right catalyst concentration to avoid mass transfer interferences and to get dependable data. A comparison between catalytic activities and productivities has been made to establish the role of the different ligands bonded both to the PNP binder and to the ruthenium metal center, and hence to find the best catalyst for this type of reaction.