9 resultados para luminescent
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the modern society, light is mostly powered by electricity which lead to a significant increase of the global energy consumption. In order to reduce it, different kinds of electric lamps have been developed over the years; it is now accepted that phosphorescence-based OLEDs offer many advantages over existing light technologies. Iridium complexes are considered excellent candidates for bright materials by virtue of the possibility to easily tune the wavelength of the emitted radiation, by appropriate modifications of the nature of the ligands. It is important to note that the synthesis of Ir(III) blue-emitting complexes is a very challenging goal, because of wide HOMO-LUMO gaps needed for produce a deep blue emission. During my thesis I planned the synthesis of two different series of new Ir(III) heteroleptic complexes, the C and the N series, using cyclometalating ligands containing an increasing number of nitrogens in inverse and regular position. I successfully performed in the synthesis of the required four ligands, i.e. 1-methyl-4-phenyl-1H-imidazole (2), 4-phenyl-1-methyl-1,2,3-triazole (3), 1-phenyl-1H-1,2,3-triazole (6) and 1-phenyl-1H-tetrazole (7), that differ in the number of nitrogens present in the heterocyclic ring and in the position of the phenyl ring. Therefore the cyclometalation of the obtained ligands to get the corresponding Ir(III)-complexes was attempted. I succeeded in the synthesis of two Ir(III)-complexes of the C series, and I carried out various attempts to set up the appropriate reaction conditions to get the remaining desired derivatives. The work is still in progress, and once all the desired complexes will be synthesized and characterized, a correlation between their structure and their emitting properties could be formulated analysing and comparing the photophysical data of the real compounds.
Resumo:
In the past decade the study of superparamagnetic nanoparticles has been intensively developed for many biomedical applications such as magnetically assisted drug delivery, MRI contrast agents, cells separation and hyperthermia therapy. All of these applications require nanoparticles with high magnetization, equipped also with a suitable surface coating which has to be non-toxic and biocompatible. In this master thesis, the silica coating of commercially available magnetic nanoparticles was investigated. Silica is a versatile material with many intrinsic features, such as hydrophilicity, low toxicity, proper design and derivatization yields particularly stable colloids even in physiological conditions. The coating process was applied to commercial magnetite particles dispersed in an aqueous solution. The formation of silica coated magnetite nanoparticles was performed following two main strategies: the Stöber process, in which the silica coating of the nanoparticle was directly formed by hydrolysis and condensation of suitable precursor in water-alcoholic mixtures; and the reverse microemulsions method in which inverse micelles were used to confine the hydrolysis and condensation reactions that bring to the nanoparticles formation. Between these two methods, the reverse microemulsions one resulted the most versatile and reliable because of the high control level upon monodispersity, silica shell thickness and overall particle size. Moving from low to high concentration, within the microemulsion region a gradual shift from larger particles to smaller one was detected. By increasing the amount of silica precursor the silica shell can also be tuned. Fluorescent dyes have also been incorporated within the silica shell by linking with the silica matrix. The structure of studied nanoparticles was investigated by using transmission electron microscope (TEM) and dynamic light scattering (DLS). These techniques have been used to monitor the syntetic procedures and for the final characterization of silica coated and silica dye doped nanoparticles. Finally, field dependent magnetization measurements showed the magnetic properties of core-shell nanoparticles were preserved. Due to a very well defined structure that combines magnetic and luminescent properties together with the possibility of further functionalization, these multifunctional nanoparticles are potentially useful platforms in biomedical fields such as labeling and imaging.
Resumo:
Recent studies on the use of bio-conjugating organometallic probes report on the possibility to use biotinylated-derivatives to selectively coordinate to a specific protein, avidin. In the present thesis, the synthesis of four new bifunctional ligands is described. The ligands contain both a pyridine triazolic unit able to coordinate a transition metal, and a biotin fragment able to bond avidin: the two functionalities are linked together by an appropriate aromatic linker (amide or ester). The obtained ligands were then employed to form luminescent Ir(III) complexes, that have been fully characterized also by a photophysical point of view both in organic and in aqueous solvent. Therefore, titrations of solutions of avidin with aqueous solutions of Ir(III)-complexes have been performed in order to estimate the luminescence variations of the complexes in the presence or in the absence of bio-conjugation.
Resumo:
In this experimental thesis, two luminescent Ir(III) and Re(I) complexes which have a terminal alkynyl group on the tetrazole ligand were prepared. The aim was to use them as building blocks, in order to synthesize more complex structures. We explored two simple reactions: the first one was a coupling, for the formation of Ir(III)/Au(III) and Re(I)/Au(III) hetero binuclear complexes, and the second was a 1,3-dipolar Cu(I)-catalyzed “Click” cycloaddition, between the terminal alkyne and azide. The synthesized products were characterized through photophysical analysis, evaluating how the photoemissive properties of these substrates were affected by the formation of more complex structures. In questo lavoro di tesi sperimentale sono stati preparati due complessi luminescenti di Ir(III) e Re(I) che presentano un alchino terminale sul legante tetrazolico. Lo scopo è stato quello di utilizzarli come building blocks per la sintesi di strutture più complesse. Sono state esplorate due semplici reazioni: la prima di coupling, per la formazione di complessi etero binucleari Ir(III)/Au(III) e Re(I)/Au(III), e la seconda di “click”, ossia una cicloaddizione 1,3-dipolare Cu(I) catalizzata tra l’alchino terminale e un’azide. I prodotti sintetizzati sono stati caratterizzati attraverso analisi fotofisiche, valutando come le proprietà fotoemissive di questi substrati siano influenzate in seguito alla formazione di strutture più complesse.
Resumo:
In this experimental work we report the design, the synthesis and characterization of a new class of Re(I) complexes of the general formula fac-[Re(CO)3(N^N)(2-QTZ)], where N^N = 2,2’ bipyridine or 1,10 phenantroline, whereas 2-QTZ is the anion 2-quinolyl-tetrazolate. The complexes and, in particular, the tetrazolate ligand 2-QTZ were designed in order to investigate their specific interaction with biologically and toxicologically relevant metal ions, as Zn(II), Cd(II) e Cu(II). The addition of such ions led to substantial variations of the photophysical properties of these complexes, suggesting their application as luminescent sensors. The photophysical performance of the complexes proved to remain unchanged inside cellular substrates, as Yarrowia Lipolytica cultures. Within these yeasts, the complexes show unchanged ability to perform luminescent sensing towards Zn(II) and Cd(II) ions.
Resumo:
Lo scopo di questo lavoro di tesi sperimentale consiste nell’ideazione e nell’ottimizzazione di nuove forme d’ingegnerizzazione di sistemi nano e micrometrici di silice (SiO2) in cui sono stati incorporati complessi di metalli di transizione e lantanoidei. Lo studio è scaturito dalla prospettiva di poter trasferire le caratteristiche di luminescenza dei complessi dalla scala molecolare di sintesi a quella macroscopica, attraverso l’utilizzo di una opportuna matrice veicolante. Dopo una intensa sessione di lavoro dedicata all’ottimizzazione della sintesi e delle caratteristiche di stabilità e resistenza dei sistemi, dalla fase sol fino ai micronizzati, si è sviluppata una possibile applicazione industriale come substrato tessile dotato di funzioni eventualmente antibatteriche. This experimental work is aimed at exploiting and optimizing new and convenient ways to incorporate organometallic and lanthanoid complexes into silica-based colloid matrices. Following a similar approach, the luminescent properties of both organometallic and lanthanoid complexes could be kept unaltered on passing from the molecular to nanometric scale (sol), ending up to micrometer sized systems (micro-powders). The subsequent optimization of the processes led to systems that were loaded onto the surface of fabric, which were successively studied for their light-induced antimicrobial abilities.
Resumo:
In the last decades, cyclometalated Ir(III) complexes have drawn a large interest for their unique properties: they are excellent triplet state emitters, thus the emission is phosphorescent in nature; typically high quantum yields and good stability make them good candidates for luminescent materials. Moreover, through an opportune choice of the ligands, it is possible to tune the emission along the whole visible spectra. Thanks to these interesting features, Ir(III) complexes have found different applications in several areas of applied science, from OLEDs to bioimaging. In particular, regarding the second application, a remarkable red-shift in the emission is required, in order to minimize the problem of the tissue penetration and the possible damages for the organisms. With the aim of synthesizing a new family of NIR emitting Ir(III) complexes, we envisaged the possibility to use for the first time 2-(1H-tetrazol-1-yl)pyridine as bidentate ligand able to provide the required red-shift of the emission of the final complexes. Exploiting the versatility of the ligand, I prepared two different families of heteroleptic Ir(III) complexes. In detail, in the first case the 2-(1H-tetrazol-1-yl)pyridine was used as bis-chelating N^N ligand, leading to cationic complexes, while in the second case it was used as cyclometalating C^N ligand, giving neutral complexes. The structures of the prepared molecules have been characterised by NMR spectroscopy and mass spectrometry. Moreover, the neutral complexes’ emissive properties have been measured: emission spectra have been recorded in solution at both room temperature and 77K, as well as in PMMA matrix. DFT calculation has then been performed and the obtained results have been compared to experimental ones.
Resumo:
This thesis arose from an interest in luminescence heteroleptic bis(dipyrrinato) Zn (II) complexes and their application in cell imaging, due to their attractive and fascinating characteristics. Among imaging technologies, near-infrared fluorescence imaging has been dedicated immense attention owing to its low absorption and autofluorescence from surrounding organism and tissues in this specific spectral region, which minimize background interference and improve tissue depth penetration. An ideal near-infrared probe should be equipped with excellence chemical and photophysical properties. The target of this work is the synthesis of new heteroleptic bis(dipyrrinato) Zn (II) complexes having two main features: the emission in the near-infrared region and water-solubility. In order to purse these intentions, the low-energy emission was achieved by expansion of π-conjugation of simple dipyrrins using Knoevenagel condensation106 and tri(ethylene)glycol chain was introduced to increase the water solubility of the final complex. Photophysical and luminescent properties of the new complexes were investigated. Finally, with a view to a potential biological use of these new complexes in biological environments, their biocompatibility was tested using a cell viability assay: (3-(4,5-dimethylthiazol-2-yl)-2’-5’-diphenyltetrazolium bromide (MTT) assay.
Resumo:
The research project of my experimental thesis deals with the design, synthesis and characterization of a new series of luminescent metallapolymers to be exploited for their peculiar photophysical and opto-electronic properties. To this end, our design strategy consisted in the incorporation of brightly luminescent and colour tuneable Ir(III) cyclometalated complexes with general formula [Ir(C^N)2(N^N)]+, where C^N represents various phenyl piridine based cyclometalating ligands and N^N is an aromatic chelating N-heterocyle, into methyl methacrylate (MMA) based copolymers. Whereas the choice of the cyclometalating ligands was driven by the possibility to obtain different emission colours, the design of the N^N ligands was aimed to obtain a molecule capable of providing the chelate coordination to the metal centre and, at the same time, of being susceptible to polymerisation reactions. To fulfil these requirements, a new molecule (abbreviated as L) consisting in an alkylated 2-pyrydyl tetrazole structure equipped with a styryl unit was designed and successfully prepared. The preparation of the target cationic metallapolymers was accomplished by the complexation of the preformed MMA-L copolymers with different amounts of an appropriate Ir(III) dimeric precursor [(Ir(C^N)2Cl)2]. The investigation of the photophysical features of the new hybrid compounds in the solid state at r.t. suggested how these metallapolymers displayed brightly intense phosphorescent emissions, whose colour was found to span from blue to yellow according to the nature of the cyclometalating ligands. In all cases, the emissive performances were superior to those displayed by the corresponding mononuclear “model” complexes. These promising results pave the way for the application of this new class of metallapolymers as Luminescent Solar Concentrators for the photovoltaic technology and/or to solid state lighting.