2 resultados para low temperatures

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present work is to gain new insights into the formation mechanism of CdTe magic-sized clusters (MSCs) at low temperatures, as well as on their evolution towards 1D and 2D nanostructures and assemblies thereof, under mild reaction conditions. The reaction system included toluene as solvent, octylamine as primary alkylamine, trioctylphosphine-Te as chalcogenide precursor and Cd(oleate)2 as metal precursor. UV-Vis absorption spectroscopy and transmission electron microscopy (TEM) were used to analyze samples containing concentrations of octylamine of 0.2, 0.8 and 2 M: well-defined, sharp absorption peaks were observed, with peaks maxima at 449, 417 and 373 nm respectively, and 1D structures with a string-like appearance were displayed in the TEM images. Investigating peaks growth, step-wise peaks shift to lower energies and reverse, step-wise peak shift to higher energies allowed to propose a model to describe the system, based on interconnected [CdTe]x cluster units originating an amine-capped, 1-dimensional, polymer-like structure, in which different degrees of electronic coupling between the clusters are held responsible for the different absorption transitions. The many parameters involved in the synthesis procedure were then investigated, starting from the Cd:Te ratio, the role of the amine, the use of different phosphine-Te and Cd precursors. The results allowed to gain important information of the reaction mechanism, as well as on the different behavior of the species featuring the sharp absorption peaks in each case. Using Cd(acetate)2 as metal precursor, 2D structures were found to evolve from the MSCs solutions over time, and their tendency to self-assemble was then analyzed employing two amines of different alkyl chain length, octylamine (C-8) and oleylamine (C-18). Their co-presence led to the formation of free-floating triangular nanosheets, which tend to readily aggregate if only octylamine is present in solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The historical iron ore deposits of eastern Elba held great importance for the region and were its primary source of iron. The Torre di Rio skarn, despite its easily accessible outcrop and vicinity to the larger Rio Marina deposit, was never properly characterized. The results of petrographic and microthermometric study presented in this work provide new constraints on the Torre di Rio skarn. Mineral assemblage of ilvaite, calcite, quartz, iron oxides and sulphides combined with textural evidence indicate that Torre di Rio skarn does not fit into classical skarn model. The complex paragenetic sequence and overlapping of skarn and ore mineralogy is result of fast formation at relatively low temperatures evidenced by the silicon enrichment and pervasive nature of limonite alteration. Hematite-magnetite textural relationship points to boundary conditions of the ore fluid in terms of oxygen fugacity. Eutectic temperatures range from -16 to -33 °C indicating complex fluids. Calculated salinities range from 1.4 to 17.4 wt% NaCleq suggesting multiple fluids of different compositions. Total homogenization temperatures vary from 330 °C to 150 °C with both homogeneously and heterogeneously trapped FIAs. Ore deposition is concentrated where skarn formation was controlled primarily by phase separation during boiling. Calculated fluid pressure at boiling suggest shallow formation depth of a few hundred meters and constrains maximum temperature of ore deposition to c. 260 °C. This work suggest that relatively low salinities of fluid inclusions could indicate dominant marine origin of the hydrothermal fluids that were activated by the Porto Azzurro pluton emplacement and that scavenged Fe from sedimentary host rocks. During boiling at shallow depths and decreasing iron solubility, these fluids started precipitating Fe-minerals at Torre di Rio mineralization. Mixing with batches of more saline fluids at around 236 °C increased salinity abruptly and marked the end of ore deposition.