2 resultados para literacy and spatial theory

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato ci siamo occupati della legge di Zipf sia da un punto di vista applicativo che teorico. Tale legge empirica afferma che il rango in frequenza (RF) delle parole di un testo seguono una legge a potenza con esponente -1. Per quanto riguarda l'approccio teorico abbiamo trattato due classi di modelli in grado di ricreare leggi a potenza nella loro distribuzione di probabilità. In particolare, abbiamo considerato delle generalizzazioni delle urne di Polya e i processi SSR (Sample Space Reducing). Di questi ultimi abbiamo dato una formalizzazione in termini di catene di Markov. Infine abbiamo proposto un modello di dinamica delle popolazioni capace di unificare e riprodurre i risultati dei tre SSR presenti in letteratura. Successivamente siamo passati all'analisi quantitativa dell'andamento del RF sulle parole di un corpus di testi. Infatti in questo caso si osserva che la RF non segue una pura legge a potenza ma ha un duplice andamento che può essere rappresentato da una legge a potenza che cambia esponente. Abbiamo cercato di capire se fosse possibile legare l'analisi dell'andamento del RF con le proprietà topologiche di un grafo. In particolare, a partire da un corpus di testi abbiamo costruito una rete di adiacenza dove ogni parola era collegata tramite un link alla parola successiva. Svolgendo un'analisi topologica della struttura del grafo abbiamo trovato alcuni risultati che sembrano confermare l'ipotesi che la sua struttura sia legata al cambiamento di pendenza della RF. Questo risultato può portare ad alcuni sviluppi nell'ambito dello studio del linguaggio e della mente umana. Inoltre, siccome la struttura del grafo presenterebbe alcune componenti che raggruppano parole in base al loro significato, un approfondimento di questo studio potrebbe condurre ad alcuni sviluppi nell'ambito della comprensione automatica del testo (text mining).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory, applied to charged test particles, in a Hamiltonian framework. The equations of motion for the guiding center dynamics, under the conditions of a constant and uniform magnetic field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for the first and second order in the guiding center potential, using invertible changes of coordinates such as Lie transforms. The equations of motion are then made dimensionless, exploiting temporal and spatial periodicities of the model chosen for the electrostatic potential. They are implemented numerically in Python. Fast Fourier Transform and its inverse are used. Improvements to the original Python scripts are made, notably the introduction of a power-law curve fitting to account for anomalous diffusion, the possibility to integrate the equations in two steps to save computational time by removing trapped trajectories, and the implementation of multicolored stroboscopic plots to distinguish between trapped and untrapped guiding centers. The post-processing of the results is made in MATLAB. The values and ranges of the parameters chosen for the simulations are selected based on numerous simulations used as feedback tools. In particular, a recurring value for the threshold to detect trapped trajectories is evidenced. Effects of the Larmor radius, the amplitude of the guiding center potential and the intensity of its second order term are studied by analyzing their diffusive regimes, their stroboscopic plots and the shape of guiding center potentials. The main result is the identification of cases anomalous diffusion depending on the values of the parameters (mostly the Larmor radius). The transitions between diffusive regimes are identified. The presence of highways for the super-diffusive trajectories are unveiled. The influence of the charge on these transitions from diffusive to ballistic behaviors is analyzed.