17 resultados para light gauge cold-formed steel frame structures
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
All the structures designed by engineers are vulnerable to natural disasters including floods and earthquakes. The energy released during strong ground motions should be dissipated by structural elements. Before 1990’s, this energy was expected to be dissipated through the beams and columns which at the same time were a part of gravity-load-resisting system. However, the main disadvantage of this idea was that gravity-resisting-frame was not repairable. Hence, during 1990’s, the idea of designing passive energy dissipation systems, including dampers, emerged. At the beginning, main problem was lack of guidelines for passive energy dissipation systems. Although till 2000 many guidelines and procedures where published, yet most of them were based on complicated analysis which was not so convenient for engineers and practitioners. In order to solve this problem recently some alternative design methods are proposed including 1. Lopez Garcia (2001) simple procedure for optimal damper configuration in MDOF structures 2. Christopoulos and Filiatrault (2006) trial and error procedure 3. Silvestri et al. (2010) Five-Step Method. 4. Palermo et al. (2015) Direct Five-Step Method. 5. Palermo et al. (2016) Simplified Equivalent Static Analysis (ESA). In this study, effectiveness and differences between last three alternative methods have been evaluated.
Resumo:
The Crescent Shaped Brace (CSB) is a new simple steel hysteretic device proposed to be used as an enhanced diagonal brace in framed structures. The CSB allows the practical designer to choose the lateral stiffness independently from the yield strength of the device, due to its peculiar ad-hoc shape. In the present thesis, a complete study referring to different CSB configurations has been presented. After the validation of the hysteretic capacities of the Crescent Shaped Braces, the seismic concept of the "enhanced first story isolation" system has been proposed within the PBSD. It relies on the total separation between the Vertical Resisting System (VRS) and the Horizontal Resisting System (HRS) in order to attain a certain objective curve of the structure. An applicative example has been studied following this concept and exploiting the advantages of the CSBs as seismic dissipative devices used for the HRS. Then several geometrical configurations called Single CSB system, Single 2 CSB system, Double CSB system, Coupled CSB system, Coupled with high length CSB system, and the final one was Cross bracing system have been introduced and modelled with SAP2000 and the results have been compared.
Resumo:
Negli ultimi anni sono state sviluppate varie soluzioni tecniche per la progettazione sismica di strutture. Questa ricerca sviluppa un metodo di confronto basato sull'analisi di costi di costruzione e danni causati dal sisma. Il metodo viene applicato al caso di studio della scuola di Bisignano (CO, Italia). L'edificio è stato progettato conformemente alle NTC 2008 con approccio tradizionale e combinando il contributo di dissipatori viscosi e dissipazione isteretica. Le strutture vengono poi analizzate sotto diverse condizioni sismiche al fine di calcolare i costi di riparazione attesi e comprendere quale soluzione tecnica risulti più economicamente vantaggiosa a parità di azione sismica di progetto.
Resumo:
Seismic assessment and seismic strengthening are the key issues need to be figured out during the process of protection and reusing of historical buildings. In this thesis the seismic behaviors of the hinged steel structure, a typical structure of historical buildings, i.e. hinged steel frames in Shanghai, China, were studied based on experimental investigations and theoretic analysis. How the non-structural members worked with the steel frames was analyzed thoroughly. Firstly, two 1/4 scale hinged steel frames were constructed based on the structural system of Bund 18, a historical building in Shanghai: M1 model without infill walls, M2 model with infill walls, and tested under the horizontal cyclic loads to investigate their seismic behavior. The Shaking Table Test and its results indicated that the seismic behavior of the hinged steel frames could be improved significantly with the help of non-structural members, i.e., surrounding elements outside the hinged steel frames and infilled walls. To specify, the columns are covered with bricks, they consist of I shape formed steel sections and steel plates, which are clenched together. The steel beams are connected to the steel column by steel angle, thus the structure should be considered as a hinged frame. And the infilled wall acted as a compression diagonal strut to withstand the horizontal load, therefore, the seismic capacity and stiffness of the hinged steel frames with infilled walls could be estimated by using the equivalent compression diagonal strut model. A SAP model has been constructed with the objective to perform a dynamic nonlinear analysis. The obtained results were compared with the results obtained from Shaking Table Test. The Test Results have validated that the influence of infill walls on seismic behavior can be estimated by using the equivalent diagonal strut model.
Resumo:
In the present study, a new pushover procedure for 3D frame structures is proposed, based on the application of a set of horizontal force and torque distributions at each floor level; in order to predict the most severe configurations of an irregular structure subjected to an earthquake, more than one pushover analysis has to be performed. The proposed method is validated by a consistent comparison of results from static pushover and dynamic simulations in terms of different response parameters, such as displacements, rotations, floor shears and floor torques. Starting from the linear analysis, the procedure is subsequently extended to the nonlinear case. The results confirm the effectiveness of the proposed procedure to predict the structural behaviour in the most severe configurations.
Resumo:
Understanding the interaction of sea ice with offshore structures is of primary importance for the development of technology in cold climate regions. The rheological properties of sea ice (strength, creep, viscosity) as well as the roughness of the contact surface are the main factors influencing the type of interaction with a structure. A device was developed and designed and small scale laboratory experiments were carried out to study sea ice frictional interaction with steel material by means of a uniaxial compression rig. Sea-ice was artificially grown between a stainless steel piston (of circular cross section) and a hollow cylinder of the same material, coaxial to the former and of the same surface roughness. Three different values for the roughness were tested: 1.2, 10 and 30 μm Ry (maximum asperities height), chosen as representative values for typical surface conditions, from smooth to normally corroded steel. Creep tests (0.2, 0.3, 0.4 and 0.6 kN) were conducted at T = -10 ºC. By pushing the piston head towards the cylinder base, three different types of relative movement were observed: 1) the piston slid through the ice, 2) the piston slid through the ice and the ice slid on the surface of the outer cylinder, 3) the ice slid only on the cylinder surface. A cyclic stick-slip motion of the piston was detected with a representative frequency of 0.1 Hz. The ratio of the mean rate of axial displacement to the frequency of the stick-slip oscillations was found to be comparable to the roughness length (Sm). The roughness is the most influential parameter affecting the amplitude of the oscillations, while the load has a relevant influence on the their frequency. Guidelines for further investigations were recommended. Marco Nanetti - seloselo@virgilio.it
Resumo:
A really particular and innovative metal-polymer sandwich material is Hybrix. Hybrix is a product developed and manufactured by Lamera AB, Gothenburg, Sweden. This innovative hybrid material is composed by two relatively thin metal layers if compared to the core thickness. The most used metals are aluminum and stainless steel and are separated by a core of nylon fibres oriented perpendicularly to the metal plates. The core is then completed by adhesive layers applied at the PA66-metal interface that once cured maintain the nylon fibres in position. This special material is very light and formable. Moreover Hybrix, depending on the specific metal which is used, can achieve a good corrosion resistance and it can be cut and punched easily. Hybrix architecture itself provides extremely good bending stiffness, damping properties, insulation capability, etc., which again, of course, change in magnitude depending in the metal alloy which is used, its thickness and core thickness. For these reasons nowadays it shows potential for all the applications which have the above mentioned characteristic as a requirement. Finally Hybrix can be processed with tools used in regular metal sheet industry and can be handled as solid metal sheets. In this master thesis project, pre-formed parts of Hybrix were studied and characterized. Previous work on Hybrix was focused on analyze its market potential and different adhesive to be used in the core. All the tests were carried out on flat unformed specimens. However, in order to have a complete description of this material also the effect of the forming process must be taken into account. Thus the main activities of the present master thesis are the following: Dynamic Mechanical-Thermal Analysis (DMTA) on unformed Hybrix samples of different thickness and on pre-strained Hybrix samples, pure epoxy adhesive samples analysis and finally moisture effects evaluation on Hybrix composite structure.
Resumo:
A partire dal 1986, nell’Olanda settentrionale si sta verificando un incremento di fenomeni sismici superficiali di medio-bassa intensità. Siccome la zona è considerata a basso rischio sismico, tali fenomeni sono legati all’estrazione di gas nella regione Groningen situata a nord-est del paese, la quale rappresenta il più grande giacimento d’Europa. Di conseguenza, si sono verificati danni ingenti sulle strutture che sorgono in zona, che di fatto non erano state progettate per resistere a forze orizzontali legate all’accelerazione del suolo. Ricercatori, aziende e università sono stati coinvolti nel progetto di ricerca finalizzato alla valutazione della vulnerabilità sismica delle costruzioni esistenti, in modo da poter avviare interventi di miglioramento o adeguamento sismico. A questo scopo, presso l’università tecnica di Delft sono stati svolti diversi test sperimentali e analitici su murature non rinforzate tipiche olandesi, che rappresentano la tipologia costruttiva più diffusa e si distinguono per la presenza di maschi murari snelli, grandi aperture e inadeguatezza delle connessioni tra gli elementi strutturali. Lo scopo della tesi è verificare l’adeguatezza del modello a telaio equivalente implementato nel software 3Muri per la modellazione di due tipiche case a schiera in muratura non rinforzata. Tali case, precedentemente ricostruite e testate in laboratorio attraverso un’analisi pushover, differiscono per metodologia costruttiva ed i materiali utilizzati.
Resumo:
Three structural typologies has been evaluated based on the nonlinear dynamic analysis (i.e. Newmark's methods for MDFs: average acceleration method with Modified Newton-Raphson iteration). Those structural typologies differ each other only for the infills presence and placement. In particular, with the term BARE FRAME: the model of the structure has two identical frames, arranged in parallel. This model constitutes the base for the generation of the other two typologies, through the addition of non-bearing walls. Whereas with the term INFILLED FRAME: the model is achieved by adding twelve infill panels, all placed in the same frame. Finally with the term PILOTIS: the model has been generated to represent structures where the first floor has no walls. Therefore the infills are positioned in only one frame in its three upper floors. All three models have been subjected to ten accelerograms using the software DRAIN 2000.
Resumo:
This thesis selects concrete, steel and their relation as research subjects, mainly commentary and discusses the property changes of steel and concrete materials under and after high temperature.The differences and comparisons of reasearch methods and ways between different researchers and different papers,particularly for chinese researches and chinese papers,and partly for comparison between chinese papers methods and Euro-Amercian papers methods about Fire Resistance Behavior of Reinforced Concrete will be summarized and analyzed.The researches on fire-resistance behavior of reinforced concrete become more and more important all over the world. And I would find differences between Chinese researches results, between Chinese researches results and other countries researches results.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
In this work seismic upgrading of existing masonry structures by means of hysteretic ADAS dampers is treated. ADAS are installed on external concrete walls, which are built parallel to the building, and then linked to the building's slab by means of steel rod connection system. In order to assess the effectiveness of the intervention, a parametric study considering variation of damper main features has been conducted. To this aim, the concepts of equivalent linear system (ELS) or equivalent viscous damping are deepen. Simplified equivalent linear model results are then checked respect results of the yielding structures. Two alternative displacement based methods for damper design are herein proposed. Both methods have been validated through non linear time history analyses with spectrum compatible accelerograms. Finally ADAS arrangement for the non conventional implementation is proposed.