5 resultados para learning activity
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of this work is to develop a prototype of an e-learning environment that can foster Content and Language Integrated Learning (CLIL) for students enrolled in an aircraft maintenance training program, which allows them to obtain a license valid in all EU member states. Background research is conducted to retrace the evolution of the field of educational technology, analyzing different learning theories – behaviorism, cognitivism, and (socio-)constructivism – and reflecting on how technology and its use in educational contexts has changed over time. Particular attention is given to technologies that have been used and proved effective in Computer Assisted Language Learning (CALL). Based on the background research and on students’ learning objectives, i.e. learning highly specialized contents and aeronautical technical English, a bilingual approach is chosen, three main tools are identified – a hypertextbook, an exercise creation activity, and a discussion forum – and the learning management system Moodle is chosen as delivery medium. The hypertextbook is based on the technical textbook written in English students already use. In order to foster text comprehension, the hypertextbook is enriched by hyperlinks and tooltips. Hyperlinks redirect students to webpages containing additional information both in English and in Italian, while tooltips show Italian equivalents of English technical terms. The exercise creation activity and the discussion forum foster interaction and collaboration among students, according to socio-constructivist principles. In the exercise creation activity, students collaboratively create a workbook, which allow them to deeply analyze and master the contents of the hypertextbook and at the same time create a learning tool that can help them, as well as future students, to enhance learning. In the discussion forum students can discuss their individual issues, content-related, English-related or e-learning environment-related, helping one other and offering instructors suggestions on how to improve both the hypertextbook and the workbook based on their needs.
Resumo:
Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.
Resumo:
Il riconoscimento delle condizioni del manto stradale partendo esclusivamente dai dati raccolti dallo smartphone di un ciclista a bordo del suo mezzo è un ambito di ricerca finora poco esplorato. Per lo sviluppo di questa tesi è stata sviluppata un'apposita applicazione, che combinata a script Python permette di riconoscere differenti tipologie di asfalto. L’applicazione raccoglie i dati rilevati dai sensori di movimento integrati nello smartphone, che registra i movimenti mentre il ciclista è alla guida del suo mezzo. Lo smartphone è fissato in un apposito holder fissato sul manubrio della bicicletta e registra i dati provenienti da giroscopio, accelerometro e magnetometro. I dati sono memorizzati su file CSV, che sono elaborati fino ad ottenere un unico DataSet contenente tutti i dati raccolti con le features estratte mediante appositi script Python. A ogni record sarà assegnato un cluster deciso in base ai risultati prodotti da K-means, risultati utilizzati in seguito per allenare algoritmi Supervised. Lo scopo degli algoritmi è riconoscere la tipologia di manto stradale partendo da questi dati. Per l’allenamento, il DataSet è stato diviso in due parti: il training set dal quale gli algoritmi imparano a classificare i dati e il test set sul quale gli algoritmi applicano ciò che hanno imparato per dare in output la classificazione che ritengono idonea. Confrontando le previsioni degli algoritmi con quello che i dati effettivamente rappresentano si ottiene la misura dell’accuratezza dell’algoritmo.
Resumo:
Recent experiments have revealed the fundamental importance of neuromodulatory action on activity-dependent synaptic plasticity underlying behavioral learning and spatial memory formation. Neuromodulators affect synaptic plasticity through the modification of the dynamics of receptors on the synaptic membrane. However, chemical substances other than neuromodulators, such as receptors co-agonists, can influence the receptors' dynamics and thus participate in determining plasticity. Here we focus on D-serine, which has been observed to affect the activity thresholds of synaptic plasticity by co-activating NMDA receptors. We use a computational model for spatial value learning with plasticity between two place cell layers. The D-serine release is CB1R mediated and the model reproduces the impairment of spatial memory due to the astrocytic CB1R knockout for a mouse navigating in the Morris water maze. The addition of path-constraining obstacles shows how performance impairment depends on the environment's topology. The model can explain the experimental evidence and produce useful testable predictions to increase our understanding of the complex mechanisms underlying learning.
Resumo:
Alpha oscillatory activity has long been associated with perceptual and cognitive processes related to attention control. The aim of this study is to explore the task-dependent role of alpha frequency in a lateralized visuo-spatial detection task. Specifically, the thesis focuses on consolidating the scientific literature's knowledge about the role of alpha frequency in perceptual accuracy, and deepening the understanding of what determines trial-by-trial fluctuations of alpha parameters and how these fluctuations influence overall task performance. The hypotheses, confirmed empirically, were that different implicit strategies are put in place based on the task context, in order to maximize performance with optimal resource distribution (namely alpha frequency, associated positively with performance): “Lateralization” of the attentive resources towards one hemifield should be associated with higher alpha frequency difference between contralateral and ipsilateral hemisphere; “Distribution” of the attentive resources across hemifields should be associated with lower alpha frequency difference between hemispheres; These strategies, used by the participants according to their brain capabilities, have proven themselves adaptive or maladaptive depending on the different tasks to which they have been set: "Distribution" of the attentive resources seemed to be the best strategy when the distribution probability between hemifields was balanced: i.e. the neutral condition task. "Lateralization" of the attentive resources seemed to be more effective when the distribution probability between hemifields was biased towards one hemifield: i.e., the biased condition task.