10 resultados para laser induced pulsed photoacoustics

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’aumento del consumo di energia globale e le problematiche legate all’inquinamento stanno rendendo indispensabile lo spostamento verso fonti di energia rinnovabile. La digestione anaerobica rappresenta una possibile soluzione in quanto permette di produrre biogas da biomassa organica di scarto ma, l’ottimizzazione del processo risulta difficoltosa a causa delle numerose variabili chimiche, biologiche, fisiche e geometriche correlate. Nel presente elaborato, concentrandosi sulle problematiche relative alla miscelazione interna, è stata investigata la fluidodinamica interna di un reattore modello ottenuto tramite scale-down di un digestore anaerobico industriale che presentava problemi di sedimentazione di sostanza solida sul fondo del reattore. Tramite tecniche di diagnostica ottiche, è stato studiato il movimento del fluido, prima utilizzando acqua demineralizzata e poi una soluzione di gomma di xantano come fluido di processo, al fine di studiare il campo di moto medio interno al reattore. Le tecniche utilizzate sono la Particle Image Velocimetry (PIV) e la Planar Laser Induced Fluorescence (PLIF). Al fine di rendere il sistema investigato il più rappresentativo possibile del digestore industriale, è stato utilizzato come fluido di processo per alcune delle prove raccolte, una soluzione acquosa 1,0g/kg di gomma di xantano, le cui proprietà reologiche sono state investigate grazie ad un Reometro Anton Paar MCR 301.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro di tesi si è posto l'obiettivo di studiare il comportamento fluidodinamico di un reattore agitato meccanicamente, scale-down di un digestore anaerobico per la produzione di biogas, attraverso tecniche di diagnostica ottica. Le tecniche utilizzate sono state la Particle Image Velocimetry, PIV, e la Planar Laser Induced Fluorescence, PLIF. Le prove sono iniziate utilizzando acqua all’interno del reattore e sono proseguite utilizzando una soluzione di acqua e Carbometilcellulosa (CMC) a concentrazione di CMC progressivamente crescente per aumentare la viscosità apparente della soluzione non newtoniana con lo scopo di simulare il più realisticamente possibile la viscosità del contenuto reale del digestore. Tutte le diverse soluzioni sono state indagate per diverse velocità e diversi sensi di rotazione. Le prove di diagnostica ottica sono state progressivamente affiancate da prove al reometro di campioni di soluzione per il calcolo della viscosità apparente. La PIV ha fornito la misura del campo di moto di un piano, è stato scelto di analizzare un piano verticale. Il metodo di diagnostica ottica ho previsto l’utilizzo di quattro componenti: una sezione per il test otticamente trasparente contenente la soluzione inseminata con piccole particelle di tracciante (particelle di argento e vetro cavo) che seguono il flusso, una sorgente di illuminazione pulsata (laser), un dispositivo di registrazione (una telecamera digitale ad alta definizione) ed un software per la cross-correlazione delle immagini acquisite (DynamicStudio). La PLIF è stata implementata per lo studio del tempo caratteristico di miscelazione nel reattore. La strumentazione utilizzata è stata la stessa della PIV con un tracciante diverso a base di Rodhamina-6G. Lo studio ha riguardato il tempo necessario all’omogeneizzazione del tracciante mediante un’analisi del coefficiente di variazione, CoV, delle immagini acquisite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the experimental development of a novel heat treatment for a high performance Laser Powder Bed Fusion Ti6Al4V alloy. Additive manufacturing production processes for titanium alloys are particularly of interest in cutting-edge engineering fields, however, high frequency laser induced thermal cycles generate a brittle as built microstructure. For this reason, heat treatments compliant with near net shape components are needed before their homologation and usage. The experimental campaign focused on the development of a multi-step heat treatment leading to a bilamellar microstructure. In fact, according to literature, such a microstructure should be promising in terms of mechanical properties both under static and cyclic loads. The heat treatment development has asked for the preliminary analyses of samples annealed and aged in laboratory, implementing several cycles, differing for what concerns temperatures, times and cooling rates. Such a characterization has been carried out through optical and electron microscopy analyses, image analyses, hardness and tensile tests. As a result, the most suitable thermal cycle has been selected and performed using industrial equipment on mini bending fatigue samples with different surface conditions. The same tests have been performed on a batch of traditionally treated samples, to provide with a comparison. This master thesis activity has finally led to the definition of a heat treatment resulting into a bilamellar microstructure, promising in terms of fatigue performances with respect to the traditionally treated alloy ones. The industrial implementation of such a heat treatment will require further improvements, particularly for what concerns the post annealing water quench, in order to prevent any surface alteration potentially responsible for the fatigue performances drop. Further development of the research may also include push-pull fatigue tests, crack grow propagation and residual stresses analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixing is a fundamental unit operation in the pharmaceutical industry to ensure consistent product quality across different batches. It is usually carried out in mechanically stirred tanks, with a large variety of designs according to the process requirements. A key aspect of pharmaceutical manufacturing is the extensive and meticulous cleaning of the vessels between runs to prevent the risk of contamination. Single-use reactors represent an increasing trend in the industry since they do not require cleaning and sterilization, reducing the need for utilities such as steam to sterilize equipment and the time between production batches. In contrast to traditional stainless steel vessels, single-use reactors consist of a plastic bag used as a vessel and disposed of after use. This thesis aims to characterize the fluid dynamics features and the mixing performance of a commercially available single-use reactor. The characterization employs a combination of various experimental techniques. The analysis starts with the visual observation of the liquid behavior inside the vessel, focusing on the vortex shape evolution at different impeller speeds. The power consumption is then measured using a torque meter to quantify the power number. Particle Image Velocimetry (PIV) is employed to investigate local fluid dynamics properties such as mean flow field and mean and rms velocity profiles. The same experimental setup of PIV is exploited for another optical measurement technique, the Planar Laser-Induced Fluorescence (PLIF). The PLIF measurements complete the characterization of the reactor with the qualitative visualization of the turbulent flow and the quantitative assessment of the system performance through the mixing time. The results confirm good mixing performances for the single-use reactor over the investigated impeller speeds and reveal that the filling volume plays a significant role in the fluid dynamics of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser shock peening is a technique similar to shot peening that imparts compressive residual stresses in materials for improving fatigue resistance. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbo-machinery, airframe structures, and medical appliances. The transient nature of the LSP phenomenon and the high rate of the laser's dynamic make real time in-situ measurement of laser/material interaction very challenging. For this reason and for the high cost of the experimental tests, reliable analytical methods for predicting detailed effects of LSP are needed to understand the potential of the process. Aim of this work has been the prediction of residual stress field after Laser Peening process by means of Finite Element Modeling. The work has been carried out in the Stress Methods department of Airbus Operations GmbH (Hamburg) and it includes investigation on compressive residual stresses induced by Laser Shock Peening, study on mesh sensitivity, optimization and tuning of the model by using physical and numerical parameters, validation of the model by comparing it with experimental results. The model has been realized with Abaqus/Explicit commercial software starting from considerations done on previous works. FE analyses are “Mesh Sensitive”: by increasing the number of elements and by decreasing their size, the software is able to probe even the details of the real phenomenon. However, these details, could be only an amplification of real phenomenon. For this reason it was necessary to optimize the mesh elements' size and number. A new model has been created with a more fine mesh in the trough thickness direction because it is the most involved in the process deformations. This increment of the global number of elements has been paid with an "in plane" size reduction of the elements far from the peened area in order to avoid too high computational costs. Efficiency and stability of the analyses has been improved by using bulk viscosity coefficients, a merely numerical parameter available in Abaqus/Explicit. A plastic rate sensitivity study has been also carried out and a new set of Johnson Cook's model coefficient has been chosen. These investigations led to a more controllable and reliable model, valid even for more complex geometries. Moreover the study about the material properties highlighted a gap of the model about the simulation of the surface conditions. Modeling of the ablative layer employed during the real process has been used to fill this gap. In the real process ablative layer is a super thin sheet of pure aluminum stuck on the masterpiece. In the simulation it has been simply reproduced as a 100µm layer made by a material with a yield point of 10MPa. All those new settings has been applied to a set of analyses made with different geometry models to verify the robustness of the model. The calibration of the model with the experimental results was based on stress and displacement measurements carried out on the surface and in depth as well. The good correlation between the simulation and experimental tests results proved this model to be reliable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis work encloses activities carried out in the Laser Center of the Polytechnic University of Madrid and the laboratories of the University of Bologna in Forlì. This thesis focuses on the superficial mechanical treatment for metallic materials called Laser Shock Peening (LSP). This process is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The innovation aspect of this work is the LSP application to specimens with extremely low thickness. In particular, after a bibliographic study and comparison with the main treatments used for the same purposes, this work analyzes the physics of the operation of a laser, its interaction with the surface of the material and the generation of the surface residual stresses which are fundamentals to obtain the LSP benefits. In particular this thesis work regards the application of this treatment to some Al2024-T351 specimens with low thickness. Among the improvements that can be obtained performing this operation, the most important in the aeronautic field is the fatigue life improvement of the treated components. As demonstrated in this work, a well-done LSP treatment can slow down the progress of the defects in the material that could lead to sudden failure of the structure. A part of this thesis is the simulation of this phenomenon using the program AFGROW, with which have been analyzed different geometric configurations of the treatment, verifying which was better for large panels of typical aeronautical interest. The core of the LSP process are the residual stresses that are induced on the material by the interaction with the laser light, these can be simulated with the finite elements but it is essential to verify and measure them experimentally. In the thesis are introduced the main methods for the detection of those stresses, they can be mechanical or by diffraction. In particular, will be described the principles and the detailed realization method of the Hole Drilling measure and an introduction of the X-ray Diffraction; then will be presented the results I obtained with both techniques. In addition to these two measurement techniques will also be introduced Neutron Diffraction method. The last part refers to the experimental tests of the fatigue life of the specimens, with a detailed description of the apparatus and the procedure used from the initial specimen preparation to the fatigue test with the press. Then the obtained results are exposed and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser Shock Peening (LSP) is a technological process used to improve mechanical properties in metallic components. When a short and intense laser pulse irradiates a metallic surface, high pressure plasma is generated on the treated surface; elasto-plastic waves, then, propagate inside the target and create plastic strain. This surface treatment induces a deep compressive residual stresses field on the treated area and through the thickness; such compressive residual stress is expected to increase the fatigue resistance, and reduce the detrimental effects of corrosion and stress corrosion cracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a ultra-high dose rate comparing them with standard dose rate. In this regard, a radioresistant SK-MEL-28 cell line were irradiated with x-ray in order to have a total dose of 2 and 4 Gy, at two different dose rate. The ultra-high dose rate is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles, in this case, we focused our study on the influence of X-rays. While a low dose rate is obtained with conventional X-ray tube. In this study it results that a ultra-high dose rate enhances radiosensitivity of melanoma cells while reducing the adhesion, proliferation and migration ability of cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlSi10Mg alloy is one of the most widely used alloys for producing structural components by Laser-based Powder Fusion (L-PBF) technology due to the high mechanical and technological properties. The present work aims to characterize mechanically and tribologically the L-PBF AlSi10Mg alloy subjected to both heat treatment and surface modification cycles. Specifically, the effects of three heat treatments on the tribological and mechanical properties of the alloy were analyzed: T5 (artificial aging at 160 °C for 4 h), T6 rapid solution heat treatment (solution heat treatment at 510 °C for 1h and aging at 160 °C for 6 h), and T6 benchmark (solution heat treatment at 540 °C for 1h and aging at 160 °C for 4 h), the latter used as a benchmark. The study highlighted how the better balance between strength and ductility properties induced by the introduction of heat treatments leads to lower wear resistance and not significant variations in the friction coefficient of the alloy. The tribological and mechanical behavior of the alloy coated with two different coating structures, consisting of (i) chemical Ni (Ni-P) and (ii) Ni-P + DLC, was also evaluated. The goal was the identification of a deposition cycle such as to guarantee the optimization of the mechanical and tribological behavior of the alloy. The Ni-P coating provided good wear resistance but an increase in the coefficient of friction. In contrast, using the DLC top coating resulted in excellent tribological performance in wear resistance and friction coefficient. The samples characterized by the Ni-P + DLC multilayer coating were subsequently subjected to mechanical characterization. The results obtained highlighted problems of adhesion and incipient breaking of the material due to the different mechanical behavior of the coating, considerably reducing the mechanical performance of the alloy coated with Ni-P+DLC multilayer solution compared to the specimens in the un-coated condition.