3 resultados para larval competition
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Food items and nematode parasites were identified from the stomachs of 42 individuals of Phocoena phocoena, 6 of Lagenorhynchus acutus and 8 of L. albirostris stranded off the coastal waters of Northern Scotland between 2004 and 2014. Post-mortem examinations have revealed heavy parasitic worm burdens. Four nematode species complex as Anisakis spp., Contracaeucum spp., Pseudoterronova spp., and Hysterothylacium spp. were recorded. Data on presence of the anisakid species in cetaceans, reported a significative relationship between the presence of Hysterothylacium and the month of host stranding; suggesting a decrease of larval H. aduncum abundance in the period between April and August due to a seasonal effect related to prey availability. Similarly, the parasite burden of the all anisakid genera was related to the year fraction of stranding, and a relationship statistically significant was found just for L. albirostris with an increase between April and October. This finding is explained by a seasonality in occurrence of white-beaked dolphins, with a peak during August, that might be related to movements of shared prey species and competition with other species (Tursiops truncatus). Geographical differences were observed in parasites number of all anisakid species, which was the highest in cetaceans from the East area and lowest in the North coast. The parasites number also increased significantly with the length of the animal and during the year, but with a significant seasonal pattern only for P. phocoena. Regarding diet composition, through a data set consisting of 34 harbour porpoises and 1 Atlantic white-sided dolphins, we found a positive association between parasite number and the cephalopods genus Alloteuthis. This higher level of parasite infection in squid from this area, is probably due to a quantitative distribution of infective forms in squid prey, an abundance of the final host and age or size maturity of squid.
Resumo:
Under the global change scenario, the possible effects of ocean warming were investigated on the larvae of five species of Caribbean Echinoids: Echinometra lucunter, Echinometra viridis, Clypeaster rosaceus, Tripneustes ventricosus and Lytechinus williamsi. Their thermal tolerance was evaluated rearing them for six days under different temperature regimes (26, 28, 30, 32, 34, 36°C). The larval sensitivity to the treatments was evaluated on the base of survival and growth. The rearing at higher temperatures has revealed a great suffering state of the larvae by inducing both reduction of live larvae and abnormality in their development. The extent of impact of the treatments varied from species to species, evidencing different levels of thermal tolerance. Anyway, higher temperature treatments have shown a general lethal threshold at about 34°C for most of the species. As an exception, the lethal threshold of Echinometra species was 36°C, few larvae of which being still capable of survive at the temperature of 34°C. The studies have also analyzed the effect of water warming on the larvae growth in terms of size and symmetry. The results put in evidence the presence of a critical upper temperature (about 32°C) at which the larvae of all species reveal a great suffering state that translates in the reduction of size (i.e., of body, stomach and postero-dorsal arm) and abnormalities (i.e., strong difference in the lengths of the two postero-dorsal arms). As sea surface temperatures are predicted to increase of 4-5°C by 2100, the high percentage of abnormal larvae and their scarce survival observed at 32- 34°C treatments indicate that the early stages of these species could be affected by future global warming.
Resumo:
Transgenerational plasticity (TGP), a type of maternal effect, occurs when the environment experienced by one or both the parents prior to fertilization directly translates, without changing DNA sequences, into changes in offspring reaction norms. Evidence of such effects has been found in several traits throughout many phyla, and, although of great potential importance - especially in a time of rapid climate change - TGP in thermal growth physiology had never been demonstrated for vertebrates until the first experiment on thermal TGP in sheepshead minnows, who, given sufficient time, adaptively program their offspring for maximal egg viability and growth at the temperature experienced before fertilization. This study on sheepshead minnows from South Carolina and Connecticut investigates how population, parent temperature, and offspring temperature affect egg production, size, viability, larval survival and growth rates, whether these effects provide evidence of TGP, and whether and how they vary with length of exposure time (5, 12, 19, 26, 33 and 43 days) of the parents to the new experimental temperatures of either 26°C or 32°C. Several results are consistent with those obtained in the previous TGP study, which outline a sequence of events consisting of an initial adjustment period to the new temperatures, in which egg production decreases and no signs of TGP are present, followed by a shift to TGP (towards 26-33 days of exposure) in which parents start to produce more eggs which are better adapted to the new thermal environment. Other results present new information, such as signs of TGP in the parent temperature effect on egg sizes already around 20 days of exposure. The innovative idea of populations being able to adapt to rapidly shifting environments through non-genetic mechanisms such as TGP opens new possibilities of survival of species and will have important implications on ecology, physiology, and contemporary evolution.