2 resultados para knowing in consulting

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il presente elaborato esplora l’attitudine delle organizzazioni nei confronti dei processi di business che le sostengono: dalla semi-assenza di struttura, all’organizzazione funzionale, fino all’avvento del Business Process Reengineering e del Business Process Management, nato come superamento dei limiti e delle problematiche del modello precedente. All’interno del ciclo di vita del BPM, trova spazio la metodologia del process mining, che permette un livello di analisi dei processi a partire dagli event data log, ossia dai dati di registrazione degli eventi, che fanno riferimento a tutte quelle attività supportate da un sistema informativo aziendale. Il process mining può essere visto come naturale ponte che collega le discipline del management basate sui processi (ma non data-driven) e i nuovi sviluppi della business intelligence, capaci di gestire e manipolare l’enorme mole di dati a disposizione delle aziende (ma che non sono process-driven). Nella tesi, i requisiti e le tecnologie che abilitano l’utilizzo della disciplina sono descritti, cosi come le tre tecniche che questa abilita: process discovery, conformance checking e process enhancement. Il process mining è stato utilizzato come strumento principale in un progetto di consulenza da HSPI S.p.A. per conto di un importante cliente italiano, fornitore di piattaforme e di soluzioni IT. Il progetto a cui ho preso parte, descritto all’interno dell’elaborato, ha come scopo quello di sostenere l’organizzazione nel suo piano di improvement delle prestazioni interne e ha permesso di verificare l’applicabilità e i limiti delle tecniche di process mining. Infine, nell’appendice finale, è presente un paper da me realizzato, che raccoglie tutte le applicazioni della disciplina in un contesto di business reale, traendo dati e informazioni da working papers, casi aziendali e da canali diretti. Per la sua validità e completezza, questo documento è stata pubblicato nel sito dell'IEEE Task Force on Process Mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of the framework we are proposing is to help the physician obtain information about the patient's condition in order to reach the \emph{correct} diagnosis as soon as possible. In our proposal, the number of interactions between the physician and the patient is reduced to a strict minimum on the one hand and, on the other hand, it is made possible to increase the number of questions to be asked if the uncertainty about the diagnosis persists. These advantages are due to the fact that (i) we implement a reasoning component that allows us to predict a symptom from another symptom without explicitly asking the patient, (ii) we consider non-binary values for the weights associated with the symptoms, we introduce a dataset filtering process in order to choose which partition should be used with respect to some particular characteristics of the patient, and, in addition, (iv) it was added new functionality to the framework: the ability to detect further future risks of a patient already knowing his pathology. The experimental results we obtained are very encouraging