7 resultados para kernel estimate

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MoNET e' un emulatore per reti wireless mobili, composto da una suite di software distribuiti. MoNET fornisce a ricercatori e sviluppatori un ambiente virtualizzato controllato per lo sviluppo e il test di applicazioni mobili e protocolli di rete per qualsiasi tipologia di hardware e piattaforma software che possa essere virtualizzata. La natura distribuita di questo emulatore permette di creare scenari di dimensione arbitraria. La rete wireless viene emulata in maniera trasparente, quindi la connettività percepita da ogni nodo virtuale, presenta le stesse caratteristiche di quella fisica emulata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi ha visto la creazione di una applicazione in grado di inviare e ricevere messaggi verso un kernel Linux 3.6.8, che e' stato modificato nel modulo net/mac80211. Lo scopo e' stato permettere all'applicazione di attivare/disattivare comportamenti alternativi del metodo di scansione di canali Wi-Fi. Sono rese possibili le seguenti funzionalita': disattivare la scansione, rendere non interrompibile la scansione software, ricevere notifiche a completamento di una scansione software. Per la comunicazione sono stati usati i socket netlink.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il lavoro descrive la progettazione, l'implementazione e il test sperimentale di un meccanismo, integrato nel kernel Linux 4.0, dedicato al riconoscimento delle perdite dei frame Wi-Fi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questo lavoro di tesi riguarda lo studio e l’implementazione di un algoritmo di multiple kernel learning (MKL) per la classificazione e la regressione di dati di neuroimaging ed, in particolare, di grafi di connettività funzionale. Gli algoritmi di MKL impiegano una somma pesata di vari kernel (ovvero misure di similarità) e permettono di selezionare le features utili alla discriminazione delle istanze durante l’addestramento del classificatore/regressore stesso. L’aspetto innovativo introdotto in questa tesi è stato lo studio di un nuovo kernel tra grafi di connettività funzionale, con la particolare caratteristica di conservare l’informazione relativa all’importanza di ogni singola region of interest (ROI) ed impiegando la norma lp come metodo per l’aggiornamento dei pesi, al fine di ottenere soluzioni sparsificate. L’algoritmo è stato validato utilizzando mappe di connettività sintetiche ed è stato applicato ad un dataset formato da 32 pazienti affetti da deterioramento cognitivo lieve e malattia dei piccoli vasi, di cui 16 sottoposti a riabilitazione cognitiva tra un’esame di risonanza ma- gnetica funzionale di baseline e uno di follow-up. Le mappe di con- nettività sono state ottenute con il toolbox CONN. Il classificatore è riuscito a discriminare i due gruppi di pazienti in una configurazione leave-one-out annidata con un’accuratezza dell’87.5%. Questo lavoro di tesi è stato svolto durante un periodo di ricerca presso la School of Computer Science and Electronic Engineering dell’University of Essex (Colchester, UK).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pinna nobilis is the biggest Mediterranean bivalve, endemic and semi-infaunal. Provide hard substrates to colonize, increasing the spatial heterogeneity of the softbottom communities. P. nobilis suffer a drastic decline due to the anthropogenic pressures. It’s included in the Habitats Directive, in the Barcelona Convention, and in the red lists of many Mediterranean countries. Estimates the growth rate allows to understand the population dynamics of species and yield knowledge to improve protection efforts. In this study a new methodology based on sclerochronology was used to estimate the age and the growth rate of a P. nobilis population located in Les Alfaques bay. The shells of 35 specimens were cataloged. A subsample of 20 individuals was selected, and one valve of each specimens was cut into radial sections along PAMS (Posterior Adductor Muscle Scar) to study the inner register. Thus, the positions of PAMS obscured by nacre were identified, and the number of missing records was estimated by the width of the calcitic layer in the anterior part of the shell. The first growth curve for the Les Alfaques bay population was calculated from the length/age data. To simulate the growth rate of this population, the growth model based on the modified Von Bertalanffy equation was used. Shallow water usually hosts small sized populations of P. nobilis, while in deeper waters specimens reaches larger size. In Les Alfaques bay the population is composed by large size individuals though it’s located in shallows waters. This unusual size pattern is probably due to a sand bar that offers protection from hydrodynamic stress, allowing individuals to elongate more. This study contributes to the knowledge on P. nobilis biology and, with the aim to monitor this species, the growth curve could be used as baseline for future studies on habitat characteristics that may affect the population structure and dynamics in Les Alfaques Bay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we study the heat kernel, a useful tool to analyze various properties of different quantum field theories. In particular, we focus on the study of the one-loop effective action and the application of worldline path integrals to derive perturbatively the heat kernel coefficients for the Proca theory of massive vector fields. It turns out that the worldline path integral method encounters some difficulties if the differential operator of the heat kernel is of non-minimal kind. More precisely, a direct recasting of the differential operator in terms of worldline path integrals, produces in the classical action a non-perturbative vertex and the path integral cannot be solved. In this work we wish to find ways to circumvent this issue and to give a suggestion to solve similar problems in other contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide, biodiversity is decreasing due to climate change, habitat fragmentation and agricultural intensification. Bees are essential crops pollinator, but their abundance and diversity are decreasing as well. For their conservation, it is necessary to assess the status of bee population. Field data collection methods are expensive and time consuming thus, recently, new methods based on remote sensing are used. In this study we tested the possibility of using flower cover diversity estimated by UAV images (FCD-UAV) to assess bee diversity and abundance in 10 agricultural meadows in the Netherlands. In order to do so, field data of flower and bee diversity and abundance were collected during a campaign in May 2021. Furthermore, RGB images of the areas have been collected using Unmanned Aerial Vehicle (UAV) and post-processed into orthomosaics. Lastly, Random Forest machine learning algorithm was applied to estimate FCD of the species detected in each field. Resulting FCD was expressed with Shannon and Simpson diversity indices, which were successively correlated to bee Shannon and Simpson diversity indices, abundance and species richness. The results showed a positive relationship between FCD-UAV and in-situ collected data about bee diversity, evaluated with Shannon index, abundance and species richness. The strongest relationship was found between FCD (Shannon Index) and bee abundance with R2=0.52. Following, good correlations were found with bee species richness (R2=0.39) and bee diversity (R2=0.37). R2 values of the relationship between FCD (Simpson Index) and bee abundance, species richness and diversity were slightly inferior (0.45, 0.37 and 0.35, respectively). Our results suggest that the proposed method based on the coupling of UAV imagery and machine learning for the assessment of flower species diversity could be developed into valuable tools for large-scale, standardized and cost-effective monitoring of flower cover and of the habitat quality for bees.