2 resultados para ionic liq polymer blend cellulose

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is part of the fields of Material Physics and Organic Electronics and aims to determine the charge carrier density and mobility in the hydrated conducting polymer–polyelectrolyte blend PEDOT:PSS. This kind of material combines electronic semiconductor functionality with selective ionic transport, biocompatibility and electrochemical stability in water. This advantageous material properties combination makes PEDOT:PSS a unique material to build organic electrochemical transistors (OECTs), which have relevant application as amplifying transducers for bioelectronic signals. In order to measure charge carrier density and mobility, an innovative 4-wire, contact independent characterization technique was introduced, the electrolyte-gated van der Pauw (EgVDP) method, which was combined with electrochemical impedance spectroscopy. The technique was applied to macroscopic thin film samples and micro-structured PEDOT:PSS thin film devices fabricated using photolithography. The EgVDP method revealed to be effective for the measurements of holes’ mobility in hydrated PEDOT:PSS thin films, which resulted to be <μ>=(0.67±0.02) cm^2/(V*s). By comparing this result with 2-point-probe measurements, we found that contact resistance effects led to a mobility overestimation in the latter. Ion accumulation at the drain contact creates a gate-dependent potential barrier and is discussed as a probable reason for the overestimation in 2-point-probe measurements. The measured charge transport properties of PEDOT:PSS were analyzed in the framework of an extended drift-diffusion model. The extended model fits well also to the non-linear response in the transport characterization and results suggest a Gaussian DOS for PEDOT:PSS. The PEDOT:PSS-electrolyte interface capacitance resulted to be voltage-independent, confirming the hypothesis of its morphological origin, related to the separation between the electronic (PEDOT) and ionic (PSS) phases in the blend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of my internship, carried out during my Erasmus period at the Complutense University of Madrid, was focused on the formulation of ionogels and hydrogels for the obtainment of films with high lignin content, and on their characterization measuring their antibacterial properties. For biomass formulation I used lignocellulosic biomass (Pinus Radiata) as raw material and ionic liquid as solvent. The two ionic liquids proposed were: 1-ethyl-3-methylimidazoliumdimethylphosphate [Emim][DMP] and 1-ethyl-3-methylimidazoliumdiethylphosphate [Emim][DEP]. The two-starting cellulose-rich solids were obtained from Pinus radiata wood that had been submitted to an organosolv process, to reduce its lignin content to fifteen (ORG15) and twenty per cent (ORG20). Having two ionic liquids and two solids available, the first phase of the project was devoted to the screening of both solids in both ionic liquids. Through this, it was possible to identify that only the [Emim][DMP] ionic liquid fulfils the purpose. It was also possible to discard the cellulose-rich solid ORG20 because its dissolution in the ionic liquid was not possible (after the time fixed) and, additionally, a Pinus radiata cellulose-rich solid bleached with hydrogen peroxide and containing ten per cent of lignin (ORG10B) was included in the screening. After screening, a total of five ionogels were subsequently formulated: two gels were formulated with the starting raw material ORG15 (with 1% and 1.75% cellulose, respectively) and three with ORG10B (with 1%, 1.75% and 3% cellulose, respectively). Five hydrogels were obtained from the ionogels. Rheological tests were performed on each ionogel and hydrogel. Finally, films were formulated from hydrogels and they were analysed by antibacterial testing to see if they could be applied as food packaging. In addition, antioxidant and properties such as opacity and transparency were also studied.