3 resultados para intrinsic Gaussian Markov random field
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The Curie-Weiss model is defined by ah Hamiltonian according to spins interact. For some particular values of the parameters, the sum of the spins normalized with square-root normalization converges or not toward Gaussian distribution. In the thesis we investigate some correlations between the behaviour of the sum and the central limit for interacting random variables.
Resumo:
Questa tesi si inserisce nell’ambito di studio dei modelli stocastici applicati alle sequenze di DNA. I random walk e le catene di Markov sono tra i processi aleatori che hanno trovato maggiore diffusione in ambito applicativo grazie alla loro capacità di cogliere le caratteristiche salienti di molti sistemi complessi, pur mantenendo semplice la descrizione di questi. Nello specifico, la trattazione si concentra sull’applicazione di questi nel contesto dell’analisi statistica delle sequenze genomiche. Il DNA può essere rappresentato in prima approssimazione da una sequenza di nucleotidi che risulta ben riprodotta dal modello a catena di Markov; ciò rappresenta il punto di partenza per andare a studiare le proprietà statistiche delle catene di DNA. Si approfondisce questo discorso andando ad analizzare uno studio che si ripropone di caratterizzare le sequenze di DNA tramite le distribuzioni delle distanze inter-dinucleotidiche. Se ne commentano i risultati, al fine di mostrare le potenzialità di questi modelli nel fare emergere caratteristiche rilevanti in altri ambiti, in questo caso quello biologico.
Resumo:
In this thesis we dealt with the problem of describing a transportation network in which the objects in movement were subject to both finite transportation capacity and finite accomodation capacity. The movements across such a system are realistically of a simultaneous nature which poses some challenges when formulating a mathematical description. We tried to derive such a general modellization from one posed on a simplified problem based on asyncronicity in particle transitions. We did so considering one-step processes based on the assumption that the system could be describable through discrete time Markov processes with finite state space. After describing the pre-established dynamics in terms of master equations we determined stationary states for the considered processes. Numerical simulations then led to the conclusion that a general system naturally evolves toward a congestion state when its particle transition simultaneously and we consider one single constraint in the form of network node capacity. Moreover the congested nodes of a system tend to be located in adjacent spots in the network, thus forming local clusters of congested nodes.