3 resultados para inorganic cations
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Ionic Liquids (ILs) constituted by organic cations and inorganic anions are particular salts with a melting point below 100°C. Their physical properties such as melting point and solubility can be tuned by altering the combination of their anions and cations. In the last years the interest in ILs has been centered mostly on their possible use as “green” alternatives to the traditional volatile organic solvents (VOCs) thanks to their low vapour pressure and the efficient ability in catalyst immobilization. In this regard, the subject of the present thesis is the study of the oxodiperoxomolybdenum catalyzed epoxidation of olefins in ILs media with hydrogen peroxide as the oxidant. In particular N-functionalized imidazolium salts, such as 1-(2-t-Butoxycarbonylamino-ethyl)-3-methylimidazolium (1), were synthesized with different counterions [I]-, [PF6]-, [NO3]-, [NTf2]- and [ClO4]– and tested as reaction solvents. The counterion exchange with [Cl]-, [NTf2]- and [NO3]- was also performed in unfuctionalized imidazolium salts such as 3-butyl-1-methylimidazol-3-ium (3). All the prepared ILs were tested in catalytic epoxidation of olefins exploiting oxodiperoxomolybdenum complexes [MoO(O2)2(C4H6N2)2] (4) and [MoO(O2)2(C5H8N2)2] (5) as catalysts. The IL 3[NTf2] and the catalysts 5 give rise to the best results leading to the selective formation of the epoxide of cis-cyclooctene avoiding hydrolysis side reaction. A preliminary study on the synthesis of novel NHC oxodiperoxomolybdenum complexes starting from imidazolium salts was also developed.
Resumo:
This thesis work has been carried out during the Erasmus exchange period at the “Université Paris 6 – Pierre et Marie Curie”, in the “Edifices PolyMétalliques – EPOM” team, leaded by Prof. Anna Proust, belonging to the “Institut Parisien de Chimie Moléculaire”, under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy Guillemot. The redox properties of functionalized Keggin and Dawson POMs have been exploited in photochemical, catalytic and reactivity tests. For the photochemical purposes, the selected POMs have been functionalized with different photoactive FGs, and the resulting products have been characterized by CV analyses, luminescence tests and UV-Vis analyses. In future, these materials will be tested for hydrogen photoproduction and polymerization of photoactive films. For the catalytic purposes, POMs have been firstly functionalized with silanol moieties, to obtain original coordination sites, and then post-functionalized with TMs such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties of TMs were coupled to the redox properties of POM frameworks. The redox behavior of some of these hybrids has been studied by spectro-electrochemical and EPR methods. Catalytic epoxidation tests have been carried out on allylic alcohols and n-olefins, employing different catalysts and variable amounts of them. The performances of POM-V hybrids have been compared to those of VO(iPrO)3. Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and ethyl-2-diazoacetate as substrates. All the obtained products have been analyzed via NMR techniques. Cyclovoltammetric analyses have been carried out in order to determine the redox behavior of selected hybrids.
Resumo:
The study of inorganic carbon chemistry of the coastal ocean is conducted in the Gulf of Cádiz (GoC). Here we describe observations obtained during 4 sampling cruises in March, June, September and November 2015. The primary data set consists of state-of-the-art measurements of the keystone parameters of the marine CO2 system: Total Alkalinity (TA), pH, dissolved inorganic carbon (DIC). We have then calculated aragonite and calcite saturation state. The distribution of inorganic carbon system parameters in the north eastern shelf of the Gulf of Cádiz showed temporal and spatial variability. River input, mixing, primary production, respiration and remineralization were factors that controlled such distributions. Data related to carbonate saturation of calcite and aragonite reveal the occurrence of a supersaturated water; in any case, both species increased with distance and decreased with depth. The carbon system parameters present a different behaviour close to the coast to offshore ad at deeper water. In this area six water masses are clearly identified by their different chemical properties: Surface Atlantic Water, North Atlantic Central Water (NACW) and Mediterranean Water (MOW). Moreover, with this work the measurement of calcium in seawater is optimize, allowing a better quantification for future work of the saturation state of CaCO3.