2 resultados para inductive logic programming

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dalla necessità di risolvere il problema della disambiguazione di un insieme di autori messo a disposizione dall'Università di Bologna, il Semantic Lancet, è nata l'idea di progettare un algoritmo di disambiguazione in grado di adattarsi, in caso di bisogno, a qualsiasi tipo di lista di autori. Per la fase di testing dell'algoritmo è stato utilizzato un dataset generato (11724 autori di cui 1295 coppie da disambiguare) dalle informazioni disponibili dal "database systems and logic programming" (DBLP), in modo da essere il più etereogeneo possibile, cioè da contenere il maggior numero di casi di disambiguazione possibile. Per i primi test di sbarramento è stato definito un algoritmo alternativo discusso nella sezione 4.3 ottenendo una misura di esattezza dell'1% ed una di completezza dell'81%. L'algoritmo proposto impostato con il modello di configurazione ha ottenuto invece una misura di esattezza dell'81% ed una di completezza del 70%, test discusso nella sezione 4.4. Successivamente l'algoritmo è stato testato anche su un altro dataset: Semantic Lancet (919 autori di cui 34 coppie da disambiguare), ottenendo, grazie alle dovute variazioni del file di configurazione, una misura di esattezza del 84% e una di completezza del 79%, discusso nella sezione 4.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human reasoning is a fascinating and complex cognitive process that can be applied in different research areas such as philosophy, psychology, laws and financial. Unfortunately, developing supporting software (to those different areas) able to cope such as complex reasoning it’s difficult and requires a suitable logic abstract formalism. In this thesis we aim to develop a program, that has the job to evaluate a theory (a set of rules) w.r.t. a Goal, and provide some results such as “The Goal is derivable from the KB5 (of the theory)”. In order to achieve this goal we need to analyse different logics and choose the one that best meets our needs. In logic, usually, we try to determine if a given conclusion is logically implied by a set of assumptions T (theory). However, when we deal with programming logic we need an efficient algorithm in order to find such implications. In this work we use a logic rather similar to human logic. Indeed, human reasoning requires an extension of the first order logic able to reach a conclusion depending on not definitely true6 premises belonging to a incomplete set of knowledge. Thus, we implemented a defeasible logic7 framework able to manipulate defeasible rules. Defeasible logic is a non-monotonic logic designed for efficient defeasible reasoning by Nute (see Chapter 2). Those kind of applications are useful in laws area especially if they offer an implementation of an argumentation framework that provides a formal modelling of game. Roughly speaking, let the theory is the set of laws, a keyclaim is the conclusion that one of the party wants to prove (and the other one wants to defeat) and adding dynamic assertion of rules, namely, facts putted forward by the parties, then, we can play an argumentative challenge between two players and decide if the conclusion is provable or not depending on the different strategies performed by the players. Implementing a game model requires one more meta-interpreter able to evaluate the defeasible logic framework; indeed, according to Göedel theorem (see on page 127), we cannot evaluate the meaning of a language using the tools provided by the language itself, but we need a meta-language able to manipulate the object language8. Thus, rather than a simple meta-interpreter, we propose a Meta-level containing different Meta-evaluators. The former has been explained above, the second one is needed to perform the game model, and the last one will be used to change game execution and tree derivation strategies.