4 resultados para in-domain data requirement

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il seguente elaborato è frutto del lavoro di ricerca, della durata di cinque mesi, svolto presso il Department of Catchment Hydrology del centro di ricerca UFZ (Helmholtz-Zentrum für Umweltforschung) con sede in Halle an der Saale, Germania. L’obiettivo della Tesi è la stima della ricarica della falda acquifera in un bacino idrografico sprovvisto di serie di osservazioni idrometriche di lunghezza significativa e caratterizzato da clima arido. Il lavoro di Tesi è stato svolto utilizzando un modello afflussi-deflussi concettualmente basato e spazialmente distribuito. La modellistica idrologica in regioni aride è un tema a cui la comunità scientifica sta dedicando numerosi sforzi di ricerca, presentando infatti ancora numerosi problemi aperti dal punto di vista tecnico-scientifico, ed è di primaria importanza per il sostentamento delle popolazioni che vi abitano. Le condizioni climatiche in queste regioni fanno sì che la falda acquifera superficiale sia la principale fonte di approvvigionamento; una stima affidabile della sua ricarica, nel tempo e nello spazio, permette un corretta gestione delle risorse idriche, senza la quale il fabbisogno idrico di queste popolazioni non potrebbe essere soddisfatto. L’area oggetto di studio è il bacino idrografico Darga, una striscia di terra di circa 74 km2, situata in Cisgiordania, la cui sezione di chiusura si trova a circa 4 kilometri dalla costa del Mar Morto, mentre lo spartiacque a monte, ubicato a Nord-ovest, dista circa 3 kilometri dalla città di Gerusalemme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ventricular cells are immersed in a bath of electrolytes and these ions are essential for a healthy heart and a regular rhythm. Maintaining physiological concentration of them is fundamental for reducing arrhythmias and risk of sudden cardiac death, especially in haemodialysis patients and in the heart diseases treatments. Models of electrically activity of the heart based on mathematical formulation are a part of the efforts to improve the understanding and prediction of heart behaviour. Modern models incorporate the extensive and ever increasing amounts of experimental data in incorporating biophysically detailed mechanisms to allow the detailed study of molecular and subcellular mechanisms of heart disease. The goal of this project was to simulate the effects of changes in potassium and calcium concentrations in the extracellular space between experimental data and and a description incorpored into two modern biophysically detailed models (Grandi et al. Model; O’Hara Rudy Model). Moreover the task was to analyze the changes in the ventricular electrical activity, in particular by studying the modifications on the simulated electrocardiographic signal. We used the cellular information obtained by the heart models in order to build a 1D tissue description. The fibre is composed by 165 cells, it is divided in four groups to differentiate the cell types that compound human ventricular tissue. The main results are the following: Grandi et al. (GBP) model is not even able to reproduce the correct action potential profile in hyperkalemia. Data from hospitalized patients indicates that the action potential duration (APD) should be shorter than physiological state but in this model we have the opposite. From the potassium point of view the results obtained by using O’Hara model (ORD) are in agreement with experimental data for the single cell action potential in hypokalemia and hyperkalemia, most of the currents follow the data from literature. In the 1D simulations we were able to reproduce ECGs signal in most the potassium concentrations we selected for this study and we collected data that can help physician in understanding what happens in ventricular cells during electrolyte disorder. However the model fails in the conduction of the stimulus under hyperkalemic conditions. The model emphasized the ECG modifications when the K+ is slightly more than physiological value. In the calcium setting using the ORD model we found an APD shortening in hypocalcaemia and an APD lengthening in hypercalcaemia, i.e. the opposite to experimental observation. This wrong behaviour is kept in one dimensional simulations bringing a longer QT interval in the ECG under higher [Ca2+]o conditions and vice versa. In conclusion it has highlighted that the actual ventricular models present in literature, even if they are useful in the original form, they need an improvement in the sensitivity of these two important electrolytes. We suggest an use of the GBP model with modifications introduced by Carro et al. who understood that the failure of this model is related to the Shannon et al. model (a rabbit model) from which the GBP model was built. The ORD model should be modified in the Ca2+ - dependent IcaL and in the influence of the Iks in the action potential for letting it him produce a correct action potential under different calcium concentrations. In the 1D tissue maybe a heterogeneity setting of intra and extracellular conductances for the different cell types should improve a reproduction of the ECG signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is mainly focused on the pre-edge analysis of XAS spectra of Ti HCF sample hexacyanocobaltate and hexacyanoferrate samples doped on a Indium Tin Oxide (ITO) thin film. The work is aimed at the determination of Ti oxidation state, as well as indication of various coordination number in the studied samples. The experiment have been conducted using XAFS (X-ray absorption fine structure)beamline at Elettra synchrotron, Trieste (Italy) under supervision of Professor Marco Giorgetti, Department of Industrial Chemistry, University of Bologna. The Master thesis accreditation to fullfill the ASC Master of Advanced Spectroscopy in Chemistry Degree requirement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’idrogeno è l’elemento chimico più semplice, leggero e abbondante nell’universo. L’atomo è composto da un nucleo, nella maggior parte dei casi formato da un unico protone o al più da un protone e un neutrone (che formano l’isotopo meno stabile detto deuterio), e da un elettrone che orbita attorno al nucleo. Per tale motivo viene classificato come il primo elemento della tavola periodica, con simbolo H e con numero atomico pari ad 1 (Z = 1) e stesso numero di massa (o numero di massa pari a 2 per il deuterio A = 2). Dal punto di vista isotopico l’idrogeno è composto per il 99.985% da prozio (idrogeno con A=1) e per il 0,015% da deuterio (A=2). Tutti gli altri isotopi sono instabili e meno abbondanti in natura. Data la sua semplicità l’idrogeno è il primo elemento formatosi dopo il Big Bang e da ciò ne deriva la sua abbondanza nell’universo e dunque la sua importanza in astrofisica.