7 resultados para importance analysis
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis is developed in the contest of Ritmare project WP1, which main objective is the development of a sustainable fishery through the identification of populations boundaries in commercially important species in Italian Seas. Three main objectives are discussed in order to help reach the main purpose of identification of stock boundaries in Parapenaeus longirostris: 1 -Development of a representative sampling design for Italian seas; 2 -Evaluation of 2b-RAD protocol; 3 -Investigation of populations through biological data analysis. First of all we defined and accomplished a sampling design which properly represents all Italian seas. Then we used information and data about nursery areas distribution, abundance of populations and importance of P. longirostris in local fishery, to develop an experimental design that prioritize the most important areas to maximize the results with actual project funds. We introduced for the first time the use of 2b-RAD on this species, a genotyping method based on sequencing the uniform fragments produced by type IIB restriction endonucleases. Thanks to this method we were able to move from genetics to the more complex genomics. In order to proceed with 2b-RAD we performed several tests to identify the best DNA extraction kit and protocol and finally we were able to extract 192 high quality DNA extracts ready to be processed. We tested 2b-RAD with five samples and after high-throughput sequencing of libraries we used the software “Stacks” to analyze the sequences. We obtained positive results identifying a great number of SNP markers among the five samples. To guarantee a multidisciplinary approach we used the biological data associated to the collected samples to investigate differences between geographical samples. Such approach assures continuity with other project, for instance STOCKMED, which utilize a combination of molecular and biological analysis as well.
Resumo:
This thesis work aims to find a procedure for isolating specific features of the current signal from a plasma focus for medical applications. The structure of the current signal inside a plasma focus is exclusive of this class of machines and a specific analysis procedure has to be developed. The hope is to find one or more features that shows a correlation with the dose erogated. The study of the correlation between the current discharge signal and the dose delivered by a plasma focus could be of some importance not only for the practical application of dose prediction but also for expanding the knowledge anbout the plasma focus physics. Vatious classes of time-frequency analysis tecniques are implemented in order to solve the problem.
Resumo:
As sustainability becomes an integral design driver for current civil structures, new materials and forms are investigated. The aim of this study is to investigate analytically and numerically the mechanical behavior of monolithic domes composed of mycological fungi. The study focuses on hemispherical and elliptical forms, as the most typical solution for domes. The influence of different types of loading, geometrical parameters, material properties and boundary conditions is investigated in this study. For the cases covered by the classical shell theory, a comparison between the analytical and the finite element solution is given. Two case studies regarding the dome of basilica of “San Luca” (Bologna, Italy) and the dome of sanctuary of “Vicoforte” (Vicoforte, Italy) are included. After the linear analysis under loading, buckling is also investigated as a critical type of failure through a parametric study using finite elements model. Since shells rely on their shape, form-found domes are also investigated and a comparison between the behavior of the form-found domes and the hemispherical domes under the linear and buckling analysis is conducted. From the analysis it emerges that form-finding can enhance the structural response of mycelium-based domes, although buckling becomes even more critical for their design. Furthermore, an optimal height to span ratio for the buckling of form-found domes is identified. This study highlights the importance of investigating appropriate forms for the design of novel biomaterial-based structures.
Resumo:
Cyanoacetylene HC3N is a molecule of great astronomical importance and it has been observed in many interstellar environments. Its deuterated form DC3N has been detected in number of sources from external galaxies to Galactic interstellar clouds, star-forming regions and planetary atmospheres. All these detections relied on previous laboratory investigations, which however still lack some essential information concerning its infrared spectrum. In this project, high-resolution ro-vibrational spectra of DC3N have been recorded in two energy regions: 150 – 450 cm-1 and 1800 – 2800 cm-1. In the first window the ν7← GS, 2ν7 ← ν7, ν5 ← ν7, ν5+ν7 ← 2ν7, ν6+ν7 → 2v7, 4ν7 ← 2ν7 bands have been assigned, while in the second region the three stretching fundamental bands ν1, ν2, ν3 have been observed and analysed. The 150 – 450 cm-1 region spectra have been recorded at the AILES beamline at the SOLEIL synchrotron (France), the 1800 – 2800 cm-1 spectra at the Department of Industrial Chemistry “Toso Montanari” in Bologna. In total, 2299 transitions have been assigned. Such experimental transition, together with data previously recorded for DC3N, were included in a least-squares fitting procedure from which several spectroscopic parameters have been determined with high precision and accuracy. They include rotational, vibrational and resonance constants. The spectroscopic data of DC3N have been included in a line catalog for this molecule in order to assist future astronomical observations and data interpretation. A paper which includes this research work has been published (M. Melosso, L. Bizzocchi, A. Adamczyk, E. Cane, P. Caselli, L. Colzid, L. Dorea, B. M. Giulianob, J.-C. Guillemine, M-A. Martin-Drumel, O. Piralif, A. Pietropolli Charmet , D. Prudenzano, V. M. Rivillad, F. Tamassia, Extensive ro-vibrational analysis of deuterated-cyanoacetylene (DC3N) from millimeter wavelengths to the infrared domain, Jour. of Quant. Spectr. and Rad. Tran. 254, 107221, 2020).
Resumo:
Rail transportation has significant importance in the future world. This importance is tightly bounded to accessible, sustainable, efficient and safe railway systems. Precise positioning in railway applications is essential for increasing railway traffic, train-track control, collision avoidance, train management and autonomous train driving. Hence, precise train positioning is a safety-critical application. Nowadays, positioning in railway applications highly depends on a cellular-based system called GSM-R, a railway-specific version of Global System for Mobile Communications (GSM). However, GSM-R is a relatively outdated technology and does not provide enough capacity and precision demanded by future railway networks. One option for positioning is mounting Global Navigation Satellite System (GNSS) receivers on trains as a low-cost solution. Nevertheless, GNSS can not provide continuous service due to signal interruption by harsh environments, tunnels etc. Another option is exploiting cellular-based positioning methods. The most recent cellular technology, 5G, provides high network capacity, low latency, high accuracy and high availability suitable for train positioning. In this thesis, an approach to 5G-based positioning for railway systems is discussed and simulated. Observed Time Difference of Arrival (OTDOA) method and 5G Positioning Reference Signal (PRS) are used. Simulations run using MATLAB, based on existing code developed for 5G positioning by extending it for Non Line of Sight (NLOS) link detection and base station exclusion algorithms. Performance analysis for different configurations is completed. Results show that efficient NLOS detection improves positioning accuracy and implementing a base station exclusion algorithm helps for further increase.
Resumo:
This master's thesis investigates different aspects of Dual-Active-Bridge (DAB) Converter and extends aspects further to Multi-Active-Bridges (MAB). The thesis starts with an overview of the applications of the DAB and MAB and their importance. The analytical part of the thesis includes the derivation of the peak and RMS currents, which is required for finding the losses present in the system. The power converters, considered in this thesis are DAB, Triple-Active Bridge (TAB) and Quad-Active Bridge (QAB). All the theoretical calculations are compared with the simulation results from PLECS software for identifying the correctness of the reviewed and developed theory. The Hardware-in-the-Loop (HIL) simulation is conducted for checking the control operation in real-time with the help of the RT box from the Plexim. Additionally, as in real systems digital signal processor (DSP), system-on-chip or field programmable gate array is employed for the control of the power electronic systems, and the execution of the control in the real-time simulation (RTS) conducted is performed by DSP.
Resumo:
The importance of product presentation in the marketing industry is well known. Labels are crucial for providing information to the buyer, but at a modest additional expense, a beautiful label with exquisite embellishments may also give the goods a sensation of high quality and elegance. Enhancing the capabilities of stamping machines is required to keep up with the increasing velocity of the production lines in the modern manufacturing industry and to offer new opportunities for customization. It’s in this context of improvements and refinements that this work takes place. The thesis was developed during an internship at Studio D, the firm that designs the mechanics of the machines produced by Cartes. The The aim of this work is to study possible upgrades for the existing hot stamping machines. The main focus of this work is centred on two objectives: first, evaluating the pressing forces generated by this machine and characterising how the mat used in the stamping process reacts to such forces. Second, propose a new conformation for the press mechanism in order to improve the rigidity and performance of the machines. The first objective is reached through a combined approach: the mat is crudely characterized with experimental data, while the frame of the machine is studied through FEM analysis. The results obtained are combined and used to upgrade a worksheet that allows to estimate the forces exerted by the machines. The second objective is reached with the proposal of new, improved designs for the main components of the machines.