6 resultados para hydrodynamics
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.
Resumo:
A seguito di recenti risultati nel campo dell’Astrofisica, con questo elaborato ci si propone di approfondire il ruolo della viscosità in una classe di modelli cosmologici. La discussione ha lo scopo di generalizzare delle tecniche applicate con successo nello studio dei fluidi ideali a sistemi dove anche la viscosità é un parametro che necessita di essere largamente preso in considerazione. Nello specifico, ci si serve di strumenti computazionali e geometrici e di teoria delle equazioni differenziali alle derivate parziali per comprendere, da un punto di vista matematico, come associare le Equazioni di Einstein ai fluidi in specifici background cosmologici. Questo elaborato parte dallo studio dei fluidi ideali in un background di tipo FLRW al fine di generalizzarlo a fluidi viscosi che scorrono in un background di tipo Bianchi I. Infine si indicano alcuni problemi ancora aperti relativi al caso dissipativo e le possibili strategie risolutive di tali questioni.
Resumo:
Phenotypic plasticity refers to the ability of an organism to express different morphologies depending on the abiotic and biotic environment. Depth integrating many variables (e.g. temperature, light and hydrodynamics), may affect population structure and dynamics of the populations, as well as connectivity patterns and genetic diversity. Eunicella singularis is a Mediterranean arborescent gorgonian who plays an important rule as engineer species providing biomass and complexity to coralligenous habitats. It has a wide bathymetric distribution ranging from shallow rocky bottoms to deep sublittoral reefs. The species shows two depth-related morphotypes which taxonomic status is not yet clarified. The aim of the study is to analyses genetic variability and/or structuring along a vertical gradient to test the presence of the two morphotypes. Furthermore, a preliminary analyses of the phylogenetic relationship among species of the genus Eunicella has been done. Six populations of Eunicella singularis were sampled from 10 to 60 m depth in Cap de Creus and individuals belonging to Eunicella cavolinii, E. verrucosa, E. racemosa and E. stricta aphyta were collected. The genetic analyses were carried out using five microsatellite loci and ITS-1 sequence polymorphism. The results showed a reduction of genetic variability along the vertical gradient. A threshold in connectivity was observed across 30 - 40 m depth, confirming the presence of two different Eunicella singularis morphotypes. The two morphological forms could be due to phenotypic plasticity, which allowed populations to suit different environmental conditions, or to a break in gene flow that determined the isolation of the two populations and an accumulation of genetic differences. The molecular markers used were not able to clarify the phylogenetic relationship among Eunicella species and the systematic position of the two morphotypes, conversely they risen the question on the existence of single species of Mediterranean Eunicella.
Resumo:
Questa tesi si focalizza sullo studio dei modelli fisico-matematici attualmente in uso per la simulazione di fluidi al calcolatore con l’obiettivo di fornire nozioni di base e avanzate sull’utilizzo di tali metodi. La trattazione ha lo scopo di facilitare la comprensione dei principi su cui si fonda la simulazione di fluidi e rappresenta una base per la creazione di un proprio simulatore. E’ possibile studiare le caratteristiche di un fluido in movimento mediante due approcci diversi, l’approccio lagrangiano e l’approccio euleriano. Mentre l’approccio lagrangiano ha lo scopo di conoscere il valore, nel tempo, di una qualsiasi proprietà di ciascuna particella che compone il fluido, l’approccio euleriano, fissato uno o più punti del volume di spazio occupato da quest’ultimo, vuole studiare quello che accade, nel tempo, in quei punti. In particolare, questa tesi approfondisce lo studio delle equazioni di Navier-Stokes, approcciandosi al problema in maniera euleriana. La soluzione numerica del sistema di equazioni differenziali alle derivate parziali derivante dalle equazioni sopracitate, approssima la velocità del fluido, a partire dalla quale è possibile risalire a tutte le grandezze che lo caratterizzano. Attenzione viene riservata anche ad un modello facente parte dell’approccio semi-lagrangiano, il Lattice Boltzmann, considerato una via di mezzo tra i metodi puramente euleriani e quelli lagrangiani, che si basa sulla soluzione dell’equazione di Boltzmann mediante modelli di collisione di particelle. Infine, analogamente al metodo di Lattice Boltzmann, viene trattato il metodo Smoothed Particles Hydrodynamics, tipicamente lagrangiano, secondo il quale solo le proprietà delle particelle comprese dentro il raggio di una funzione kernel, centrata nella particella di interesse, influenzano il valore della particella stessa. Un resoconto pratico della teoria trattata viene dato mediante delle simulazioni realizzate tramite il software Blender 2.76b.
Resumo:
In this thesis, we perform a next-to-leading order calculation of the impact of primordial magnetic fields (PMF) into the evolution of scalar cosmological perturbations and the cosmic microwave background (CMB) anisotropy. Magnetic fields are everywhere in the Universe at all scales probed so far, but their origin is still under debate. The current standard picture is that they originate from the amplification of initial seed fields, which could have been generated as PMFs in the early Universe. The most robust way to test their presence and constrain their features is to study how they impact on key cosmological observables, in particular the CMB anisotropies. The standard way to model a PMF is to consider its contribution (quadratic in the magnetic field) at the same footing of first order perturbations, under the assumptions of ideal magneto-hydrodynamics and compensated initial conditions. In the perspectives of ever increasing precision of CMB anisotropies measurements and of possible uncounted non-linear effects, in this thesis we study effects which go beyond the standard assumptions. We study the impact of PMFs on cosmological perturbations and CMB anisotropies with adiabatic initial conditions, the effect of Alfvén waves on the speed of sound of perturbations and possible non-linear behavior of baryon overdensity for PMFs with a blue spectral index, by modifying and improving the publicly available Einstein-Boltzmann code SONG, which has been written in order to take into account all second-order contributions in cosmological perturbation theory. One of the objectives of this thesis is to set the basis to verify by an independent fully numerical analysis the possibility to affect recombination and the Hubble constant.
Resumo:
A broad sector of literature focuses on the relationship between fluid dynamics and gravitational systems. This thesis presents results that suggest the existence of a new kind of fluid/gravity duality not based on the holographic principle. The goal is to provide tools that allow us to systematically unearth hidden symmetries for reduced models of cosmology. The focus is on the field space of these models, i.e. the superspace. In fact, conformal isometries of the supermetric leave geodesics in the field space unaltered; this leads to symmetries of the models. An innovative aspect is the use of the Eisenhart-Duval’s lift. Using this method, systems constrained by a potential can be treated as free ones. Moreover, charges explicitly dependent on time, i.e. dynamical, can be found. A detailed analysis is carried out on three basic models of homogenous cosmology: i) flat Friedmann-Lemaître-Robertson-Walker’s isotropic universe filled with a massless scalar field; ii) Schwarzschild’s black hole mechanics and its extension to vacuum (A)dS gravity; iii) Bianchi’s anisotropic type I universe with a massless scalar field. The results show the presence of a hidden Schrödinger’s symmetry which, being intrinsic to both Navier-Stokes’ and Schrödinger’s equations, indicates a correspondence between cosmology and hydrodynamics. Furthermore, the central extension of this algebra explicitly relates two concepts. The first is the number of particles coming from the fluid picture; while the second is the ratio between the IR and UV cutoffs that weighs how much a theory has of “classical” over “quantum”. This suggests a spacetime that emerges from an underlying world which is described by quantum building blocks. These quanta statistically conspire to appear as gravitational phenomena from a macroscopic point of view.