4 resultados para high solids content

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of environmentally friendly products increased the interest in renewable resources as alternatives to petrochemical products. Polyhydroxyalkanoates (PHAs) are examples of such promising products, as they are biodegradable polymers with numerous potential applications. PHA production approach consists of using an open mixed microbial culture (MMC) and inexpensive feedstocks (waste or industry byproducts feedstock). The PHA process generally comprises three stages: (1) acidogenic fermentation (AF) stage (conversion of organic carbon into fermentation products); (2) culture selection stage (enrichment in PHA-storing organisms by applying Feast and Famine regime); and (3) PHA production stage (PHA accumulation up to the culture’s maximum capacity). AF of protein-rich residues results in ammonia-rich fermented streams, which can be presented as a challenge for the PHA production stage. The presence of ammonia during this stage may induce organisms to grow instead of producing PHAs. For this reason, the assessment of the effect of a high content of ammonia on PHA production it is the utmost importance. The main goal of the current project is to select a MMC enriched in PHA-accumulating organisms in conditions of high ammonia content and to evaluate the effects of ammonia presence during PHA accumulation. The culture was selected applying the Feast & Famine strategy, and fed, firstly, using a synthetic mixture of VFAs and later using a fermented stream obtained from the fermentation of protein-rich raw materials. The selected culture could accumulate up to 24% PHA per VSS with the synthetic mixture of VFAs and up to 29% for the real fermented stream. The PHA accumulation resulted in different production in the presence and absence of ammonia. Regarding to the synthetic feed, 59%wt. PHA (VSS basis) in the absence of ammonia, and 55%wt. (VSS basis) in the presence, were obtained. For the real feed, the PHA content was about 40%wt. (VSS basis) in both reactors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of my internship, carried out during my Erasmus period at the Complutense University of Madrid, was focused on the formulation of ionogels and hydrogels for the obtainment of films with high lignin content, and on their characterization measuring their antibacterial properties. For biomass formulation I used lignocellulosic biomass (Pinus Radiata) as raw material and ionic liquid as solvent. The two ionic liquids proposed were: 1-ethyl-3-methylimidazoliumdimethylphosphate [Emim][DMP] and 1-ethyl-3-methylimidazoliumdiethylphosphate [Emim][DEP]. The two-starting cellulose-rich solids were obtained from Pinus radiata wood that had been submitted to an organosolv process, to reduce its lignin content to fifteen (ORG15) and twenty per cent (ORG20). Having two ionic liquids and two solids available, the first phase of the project was devoted to the screening of both solids in both ionic liquids. Through this, it was possible to identify that only the [Emim][DMP] ionic liquid fulfils the purpose. It was also possible to discard the cellulose-rich solid ORG20 because its dissolution in the ionic liquid was not possible (after the time fixed) and, additionally, a Pinus radiata cellulose-rich solid bleached with hydrogen peroxide and containing ten per cent of lignin (ORG10B) was included in the screening. After screening, a total of five ionogels were subsequently formulated: two gels were formulated with the starting raw material ORG15 (with 1% and 1.75% cellulose, respectively) and three with ORG10B (with 1%, 1.75% and 3% cellulose, respectively). Five hydrogels were obtained from the ionogels. Rheological tests were performed on each ionogel and hydrogel. Finally, films were formulated from hydrogels and they were analysed by antibacterial testing to see if they could be applied as food packaging. In addition, antioxidant and properties such as opacity and transparency were also studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this work is to find a methodology in order to make possible the recycling of fines (0 - 4 mm) in the Construction and Demolition Waste (CDW) process. At the moment this fraction is a not desired by-product: it has high contaminant content, it has to be separated from the coarse fraction, because of its high water absorption which can affect the properties of the concrete. In fact, in some countries the use of fines recycled aggregates is highly restricted or even banned. This work is placed inside the European project C2CA (from Concrete to Cement and Clean Aggregates) and it has been held in the Faculty of Civil Engineering and Geosciences of the Technical University of Delft, in particular, in the laboratory of Resources And Recycling. This research proposes some procedures in order to close the loop of the entire recycling process. After the classification done by ADR (Advanced Dry Recovery) the two fractions "airknife" and "rotor" (that together constitute the fraction 0 - 4 mm) are inserted in a new machine that works at high temperatures. The temperatures analysed in this research are 600 °C and 750 °C, cause at that temperature it is supposed that the cement bounds become very weak. The final goal is "to clean" the coarse fraction (0,250 - 4 mm) from the cement still attached to the sand and try to concentrate the cement paste in the fraction 0 - 0,250 mm. This new set-up is able to dry the material in very few seconds, divide it into two fractions (the coarse one and the fine one) thanks to the air and increase the amount of fines (0 - 0,250 mm) promoting the attrition between the particles through a vibration device. The coarse fraction is then processed in a ball mill in order to improve the result and reach the final goal. Thanks to the high temperature it is possible to markedly reduce the milling time. The sand 0 - 2 mm, after being heated and milled is used to replace 100% of norm sand in mortar production. The results are very promising: the mortar made with recycled sand reaches an early strength, in fact the increment with respect to the mortar made with norm sand is 20% after three days and 7% after seven days. With this research it has been demonstrated that once the temperature is increased it is possible to obtain a clean coarse fraction (0,250 - 4 mm), free from cement paste that is concentrated in the fine fraction 0 - 0,250 mm. The milling time and the drying time can be largely reduced. The recycled sand shows better performance in terms of mechanical properties with respect to the natural one.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to fundamentally characterize the laboratory performance of traditional hot mix asphalt (HMA) mixtures incorporating high RAP content and waste tire crumb rubber through their fundamental engineering properties. The nominal maximum aggregates size was chosen for this research was 12mm (considering the limitation of aggregate size for surface layer) and both coarse and fine aggregates are commonly used in Italy that were examined and analyzed in this study. On the other hand, the RAP plays an important role in reducing production costs and enhancing the environmentally sustainable pavements instead of using virgin materials in HMA. Particularly, this study has aimed to use 30% of RAP content (25% fine aggregate RAP and 5% coarse aggregate RAP) and 1% of CR additives by the total weight of aggregates for mix design. The mixture of aggregates, RAP and CR were blended with different amount of unmodified binder through dry processes. Generally, the main purposes of this study were investigating on capability of using RAP and CR in dense graded HMA and comparing the performance of rejuvenator in RAP with CR. In addition, based on the engineering analyses during the study, we were able compare the fundamental Indirect Tensile Strength (ITS) value of dense graded HMA and also mechanical characteristics in terms of Indirect Tensile Stiffness Modulus (ITSM). In order to get an extended comparable data, four groups of different mixtures such as conventional mixture with only virgin aggregates (DV), mixture with RAP (DR), mixture with RAP and rejuvenator (DRR), and mixture with RAP, rejuvenator, CR (DRRCr) were investigated in this research experimentally. Finally, the results of those tests indicated that the mixtures with RAP and CR had the high stiffness and less thermal sensitivity, while the mixture with virgin aggregates only had very low values in comparison.