3 resultados para heterogeneous data sources
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The increasing number of extreme rainfall events, combined with the high population density and the imperviousness of the land surface, makes urban areas particularly vulnerable to pluvial flooding. In order to design and manage cities to be able to deal with this issue, the reconstruction of weather phenomena is essential. Among the most interesting data sources which show great potential are the observational networks of private sensors managed by citizens (crowdsourcing). The number of these personal weather stations is consistently increasing, and the spatial distribution roughly follows population density. Precisely for this reason, they perfectly suit this detailed study on the modelling of pluvial flood in urban environments. The uncertainty associated with these measurements of precipitation is still a matter of research. In order to characterise the accuracy and precision of the crowdsourced data, we carried out exploratory data analyses. A comparison between Netatmo hourly precipitation amounts and observations of the same quantity from weather stations managed by national weather services is presented. The crowdsourced stations have very good skills in rain detection but tend to underestimate the reference value. In detail, the accuracy and precision of crowd- sourced data change as precipitation increases, improving the spread going to the extreme values. Then, the ability of this kind of observation to improve the prediction of pluvial flooding is tested. To this aim, the simplified raster-based inundation model incorporated in the Saferplaces web platform is used for simulating pluvial flooding. Different precipitation fields have been produced and tested as input in the model. Two different case studies are analysed over the most densely populated Norwegian city: Oslo. The crowdsourced weather station observations, bias-corrected (i.e. increased by 25%), showed very good skills in detecting flooded areas.
Resumo:
There are many natural events that can negatively affect the urban ecosystem, but weather-climate variations are certainly among the most significant. The history of settlements has been characterized by extreme events like earthquakes and floods, which repeat themselves at different times, causing extensive damage to the built heritage on a structural and urban scale. Changes in climate also alter various climatic subsystems, changing rainfall regimes and hydrological cycles, increasing the frequency and intensity of extreme precipitation events (heavy rainfall). From an hydrological risk perspective, it is crucial to understand future events that could occur and their magnitude in order to design safer infrastructures. Unfortunately, it is not easy to understand future scenarios as the complexity of climate is enormous. For this thesis, precipitation and discharge extremes were primarily used as data sources. It is important to underline that the two data sets are not separated: changes in rainfall regime, due to climate change, could significantly affect overflows into receiving water bodies. It is imperative that we understand and model climate change effects on water structures to support the development of adaptation strategies. The main purpose of this thesis is to search for suitable water structures for a road located along the Tione River. Therefore, through the analysis of the area from a hydrological point of view, we aim to guarantee the safety of the infrastructure over time. The observations made have the purpose to underline how models such as a stochastic one can improve the quality of an analysis for design purposes, and influence choices.
Resumo:
The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.