5 resultados para harmonic distortions

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past years, the considerable need in the domain of communications for more potent photonic devices has focused the research activities into the nonlinear optical (NLO) materials which can be used for modern optical switches. In this regard, a lot of research activities are focused on the organic materials and conjugated polymers which offer more advantages compared to the inorganic ones. On this matter, poly(3-alkylthiophene) (P3AT), an organic conjugated polymer, can be investigated as potential optical material with in particular the focus on the NLO properties such as the first- and second-hyperpolarizability, β and γ respectively. The activities carried out at the Laboratory of Polymer Synthesis of the KU Leuven, during the master's thesis work, focused on the study of conjugated polymers in order to evaluate their NLO properties for the future purpose of applications in optical systems. In particular, three series of polythiophenes functionalized with an alkyl side chain in the 3-position were synthesized: poly(3-hexylthiophene) (P3HT), poly[3-(2-ethylhexyl)thiophene] (P3EHT) and random copolymer of the two regio-isomers of P3HT. They were made in order to study the influence of molar mass, branching and regio-irregularity on the γ-value. The Kumada catalyst transfer condensative polymerization (KCTCP) and the Pd(RuPhos)-protocol were used for the polymerizations in order to have control over the molar mass of the growing chain and consequently to obtain well-defined and reproducible materials. The P3AT derivatives obtained were characterized by gel permeation chromatography (GPC), spectroscopic techniques (1H-NMR, UV-Vis) and the γ-value was investigated using the third-harmonic scattering (THS) technique. In particular, the THS technique is useful to investigate the optical behavior of the series of polymers in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente tesi si propone di mostrare che l’oscillatore armonico quantistico dipendente dal tempo è un sistema risolvibile in maniera esatta. La trattazione è articolata in tre capitoli: nel primo viene richiamata la teoria dell’oscillatore armonico quantistico indipendente dal tempo, al fine di recuperare i concetti e le metodologie che sono comuni anche alla sua controparte dipendente dal tempo. Nel secondo capitolo viene fornita una breve introduzione alla teoria degli operatori invarianti dipendenti dal tempo, di cui ci interessa la loro relazione con le soluzioni dell’equazione di Schrödinger. Infine, nel terzo capitolo viene presentato il problema dell’oscillatore armonico quantistico dipendente dal tempo e discussa la sua soluzione esatta. In aggiunta se ne individuano gli stati coerenti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless power transfer is becoming a crucial and demanding task in the IoT world. Despite the already known solutions exploiting a near-field powering approach, far-field WPT is definitely more challenging, and commercial applications are not available yet. This thesis proposes the recent frequency-diverse array technology as a potential candidate for realizing smart and reconfigurable far-field WPT solutions. In the first section of this work, an analysis on some FDA systems is performed, identifying the planar array with circular geometry as the most promising layout in terms of radiation properties. Then, a novel energy aware solution to handle the critical time variability of the FDA beam pattern is proposed. It consists on a time-control strategy through a triangular pulse, and it allows to achieve ad-hoc and real time WPT. Moreover, an essential frequency domain analysis of the radiating behaviour of a pulsed FDA system is presented. This study highlights the benefits of exploiting the intrinsic pulse harmonics for powering purposes, thus minimising the power loss. Later, the electromagnetic design of a radial FDA architecture is addressed. In this context, an exhaustive investigation on miniaturization techniques is carried out; the use of multiple shorting pins together with a meandered feeding network has been selected as a powerful solution to halve the original prototype dimension. Finally, accurate simulations of the designed radial FDA system are performed, and the obtained results are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we explore constraints which can be put on the primordial power spectrum of curvature perturbations beyond the scales probed by anisotropies of the cosmic microwave background and galaxy surveys. We exploit present and future measurements of CMB spectral distortions, and their synergy with CMB anisotropies, as well existing and future upper limits on the stochastic background of gravitational waves. We derive for the first time phenomenological templates that fit small-scale bumps in the primordial power spectrum generated in multi-field models of inflation. By using such templates, we study for the first time imprints of primordial peaks on anisotropies and spectral distortions of the cosmic microwave background and we investigate their contribution to the stochastic background of gravitational waves. Through a Monte Carlo Markov Chain analysis we infer for the first time the constraints on the amplitude, the width and the location of such bumps using Planck and FIRAS data. We also forecast how a future spectrometer like PIXIE could improve FIRAS boundaries. The results derived in this thesis have implications for the possibility of primordial black holes from inflation.