5 resultados para gossip, dissemination, network, algorithms

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis offers a practical and theoretical evaluations about gossip-epidemic algorithms, comparing those most common in the literature with new proposed algorithms and analyzing their behavior. Tests have been executed using one hundred graphs that has been randomly generated by Large Unstructured NEtwork Simulator (LUNES), a simulation software provided by Parallel and Distributed Simulation Research Group (PADS), of the Department of Computer Science, Università di Bologna and simulated using Advanced RTI System (ARTÌS), based on the High Level Architecture standard. Literatures algorithms have been analyzed and taken as base for new algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gossip protocols have been analyzed as a feasible solution for data dissemination on peer-to-peer networks. In this thesis, a new data dissemination protocol is proposed and compared with other known gossip mechanisms. Performance evaluation is based on simulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of localizing a scatterer, which represents a tumor, in a homogeneous circular domain, which represents a breast, is addressed. A breast imaging method based on microwaves is considered. The microwave imaging involves to several techniques for detecting, localizing and characterizing tumors in breast tissues. In all such methods an electromagnetic inverse scattering problem exists. For the scattering detection method, an algorithm based on a linear procedure solution, inspired by MUltiple SIgnal Classification algorithm (MUSIC) and Time Reversal method (TR), is implemented. The algorithm returns a reconstructed image of the investigation domain in which it is detected the scatterer position. This image is called pseudospectrum. A preliminary performance analysis of the algorithm vying the working frequency is performed: the resolution and the signal-to-noise ratio of the pseudospectra are improved if a multi-frequency approach is considered. The Geometrical Mean-MUSIC algorithm (GM- MUSIC) is proposed as multi-frequency method. The performance of the GMMUSIC is tested in different real life computer simulations. The performed analysis shows that the algorithm detects the scatterer until the electrical parameters of the breast are known. This is an evident limit, since, in a real life situation, the anatomy of the breast is unknown. An improvement in GM-MUSIC is proposed: the Eye-GMMUSIC algorithm. Eye-GMMUSIC algorithm needs no a priori information on the electrical parameters of the breast. It is an optimizing algorithm based on the pattern search algorithm: it searches the breast parameters which minimize the Signal-to-Clutter Mean Ratio (SCMR) in the signal. Finally, the GM-MUSIC and the Eye-GMMUSIC algorithms are tested on a microwave breast cancer detection system consisting of an dipole antenna, a Vector Network Analyzer and a novel breast phantom built at University of Bologna. The reconstruction of the experimental data confirm the GM-MUSIC ability to localize a scatterer in a homogeneous medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gli algoritmi di gossip sono utilizzati per la disseminazione di messaggi in una rete peer-to-peer. La tesi tratta lo sviluppo, l'implementazione e l'analisi di quattro nuovi algoritmi di gossip "a due fasi". Gli algoritmi sono stati sviluppati e testati con il simulatore LUNES per poi essere analizzati in vari confronti con gli algoritmi classici dell'ambito, ovvero Fixed Probability e Conditional Broadcast. Le prove sono state effettuate su varie tipologie di grafi, ovvero Random, Scale-free, Small-world e K-Regular.