9 resultados para global warming potential
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Considerando l'elevato grado di inquinamento del pianeta e la forte dipendenza delle attività antropiche dai combustibili fossili, stanno avendo notevole sviluppo e incentivazione gli impianti per la produzione di energia elettrica da fonti rinnovabili. In particolare, la digestione anaerobica è in grande diffusione in Italia. Lo studio in oggetto si prefigge l'obiettivo di determinare, mediante analisi di Life Cycle Assessment (LCA), i carichi ambientali di un impianto di digestione anaerobica, e della sua filiera, per valutarne l'effettiva ecosostenibilità. L'analisi considera anche gli impatti evitati grazie all'immissione in rete dell'energia elettrica prodotta e all'utilizzo del digestato in sostituzione dell'urea. Lo studio analizza sei categorie d'impatto: Global warming potential (GWP), Abiotic depletion potential (ADP), Acidification potential (AP), Eutrophication potential (EP), Ozone layer depletion potential (ODP) e Photochemical oxidant formation potential (POFP). I valori assoluti degli impatti sono stati oggetto anche di normalizzazione per stabilire la loro magnitudo. Inoltre, è stata effettuata un'analisi di sensitività per investigare le variazioni degli impatti ambientali in base alla sostituzione di differenti tecnologie per la produzione di energia elettrica: mix elettrico italiano, carbone e idroelettrico. Infine, sono stati analizzati due scenari alternativi all'impianto in esame che ipotizzano la sua conversione ad impianto per l'upgrading del biogas a biometano. I risultati mostrano, per lo scenario di riferimento (produzione di biogas), un guadagno, in termini ambientali, per il GWP, l'ADP e il POFP a causa dei notevoli impatti causati dalla produzione di energia elettrica da mix italiano che la filiera esaminata va a sostituire. I risultati evidenziano anche quanto gli impatti ambientali varino in base alla tipologia di alimentazione del digestore anaerobica: colture dedicate o biomasse di scarto. I due scenari alternativi, invece, mostrano un aumento degli impatti, rispetto allo scenario di riferimento, causati soprattutto dagli ulteriori consumi energetici di cui necessitano sia i processi di purificazione del biogas in biometano sia i processi legati alla digestione anaerobica che, nel caso dello scenario di riferimento, sono autoalimentati. L'eventuale conversione dell'attuale funzione dell'impianto deve essere fatta tenendo anche in considerazione i benefici funzionali ed economici apportati dalla produzione del biometano rispetto a quella del biogas.
Resumo:
We need a large amount of energy to make our homes pleasantly warm in winter and cool in summer. If we also consider the energy losses that occur through roofs, perimeter walls and windows, it would be more appropriate to speak of waste than consumption. The solution would be to build passive houses, i.e. buildings more efficient and environmentally friendly, able to ensure a drastic reduction of electricity and heating bills. Recently, the increase of public awareness about global warming and environmental pollution problems have “finally” opened wide possibility in the field of sustainable construction by encouraging new renewable methods for heating and cooling space. Shallow geothermal allows to exploit the renewable heat reservoir, present in the soil at depths between 15 and 20 m, for air-conditioning of buildings, using a ground source heat pump. This thesis focuses on the design of an air-conditioning system with geothermal heat pump coupled to energy piles, i.e. piles with internal heat exchangers, for a typical Italian-family building, on the basis of a geological-technical report about a plot of Bologna’s plain provided by Geo-Net s.r.l. The study has involved a preliminary static sizing of the piles in order to calculate their length and number, then the project was completed making the energy sizing, where it has been verified if the building energy needs were met with the static solution obtained. Finally the attention was focused on the technical and economical validity compared to a traditional system (cost-benefit analysis) and on the problem of the uncertainty data design and their effects on the operating and initial costs of the system (sensitivity analysis). To evaluate the performance of the thermal system and the potential use of the piles was also used the PILESIM2 software, designed by Dr. Pahud of the SUPSI’s school.
Resumo:
Transgenerational plasticity (TGP), a type of maternal effect, occurs when the environment experienced by one or both the parents prior to fertilization directly translates, without changing DNA sequences, into changes in offspring reaction norms. Evidence of such effects has been found in several traits throughout many phyla, and, although of great potential importance - especially in a time of rapid climate change - TGP in thermal growth physiology had never been demonstrated for vertebrates until the first experiment on thermal TGP in sheepshead minnows, who, given sufficient time, adaptively program their offspring for maximal egg viability and growth at the temperature experienced before fertilization. This study on sheepshead minnows from South Carolina and Connecticut investigates how population, parent temperature, and offspring temperature affect egg production, size, viability, larval survival and growth rates, whether these effects provide evidence of TGP, and whether and how they vary with length of exposure time (5, 12, 19, 26, 33 and 43 days) of the parents to the new experimental temperatures of either 26°C or 32°C. Several results are consistent with those obtained in the previous TGP study, which outline a sequence of events consisting of an initial adjustment period to the new temperatures, in which egg production decreases and no signs of TGP are present, followed by a shift to TGP (towards 26-33 days of exposure) in which parents start to produce more eggs which are better adapted to the new thermal environment. Other results present new information, such as signs of TGP in the parent temperature effect on egg sizes already around 20 days of exposure. The innovative idea of populations being able to adapt to rapidly shifting environments through non-genetic mechanisms such as TGP opens new possibilities of survival of species and will have important implications on ecology, physiology, and contemporary evolution.
Resumo:
In the past a change in temperature of 5°C most often occurred over intervals of thousands of years. According to estimates by the IPCC, in the XXI century is expected an increase in average temperatures in Europe between 1.8 and 4.0°C in the best case caused by emissions of carbon dioxide and other GHG from human activities. As well as on the environment and economic context, global warming will have effects even on road safety. Several studies have already shown how increasing temperature may cause a worsening of some types of road surface damages, especially rutting, a permanent deformation of the road structures consisting in the formation of a longitudinal depression in the wheelpath, mostly due to the rheological behavior of bitumen. This deformation evolves during the hot season because of the heating capacity of the asphalt layers, in fact, the road surface temperature is up to 24°C higher than air. In this thesis, through the use of Wheeltrack test, it was studied the behavior of some types of asphalt concrete mixtures subjected to fatigue testing at different temperatures. The objectives of this study are: to determine the strain variation of different bituminous mixture subjected to fatigue testing at different temperature conditions; to investigate the effect of aggregates, bitumen and mixtures’ characteristics on rutting. Samples were made in the laboratory mostly using an already prepared mixtures, the others preparing the asphalt concrete from the grading curve and bitumen content. The same procedure was performed for each specimen: preparation, compaction using the roller compactor, cooling and heating before the test. The tests were carried out at 40 - 50 - 60°C in order to obtain the evolution of deformation with temperature variation, except some mixtures for which the tests were carried out only at 50°C. In the elaboration of the results were considered testing parameters, component properties and the characteristics of the mixture. Among the testing parameters, temperature was varied for each sample. The mixtures responded to this variation with a different behavior (linear logarithmic and exponential) not directly correlated with the asphalt characteristics; the others parameters as load, passage frequency and test condition were kept constant. According to the results obtained, the main contribution to deformation is due to the type of binder used, it was found that the modified bitumen have a better response than the same mixtures containing traditional bitumen; to the porosity which affects negatively the behavior of the samples and to the homogeneity ceteris paribus. The granulometric composition did not seem to have interfered with the results. Overall has emerged at working temperature, a decisive importance of bitumen composition, than the other characteristics of the mixture, that tends to disappear with heating in favor of increased dependence of rutting resistance from the granulometric composition of the sample considered. In particular it is essential, rather than the mechanical characteristics of the binder, its chemical properties given by the polymeric modification. To confirm some considered results, the maximum bulk density and the air voids content were determined. Tests have been conducted in the laboratories of the Civil Engineering Department at NTNU in Trondheim according to European Standards.
Resumo:
La temperatura influenza molti dei processi fisiologici degli organismi marini e, considerato che la riproduzione dei coralli sembrerebbe essere sensibile agli stress, è necessario comprendere come questa possa reagire ai cambiamenti climatici globali per riuscire a prevedere le future risposte delle popolazioni. Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) è un corallo solitario non zooxantellato presente in Mediterraneo e lungo le coste Atlantiche dal Portogallo alla Gran Bretagna meridionale, dalla superficie fino a 70 metri di profondità.. È un organismo gonocorico con fecondazione interna. In questo lavoro di tesi sono stati analizzati gli aspetti della gametogenesi di L. pruvoti a diverse latitudini per ottenere risultati preliminari riguardanti le possibili correlazioni tra attività riproduttiva e parametri ambientali (temperatura e irradianza). Tale studio si colloca all’interno del progetto europeo sul riscaldamento globale e biologia dei coralli FP7–IDEAS-ERC “Corals and Global Warming: The Mediterranean versus the Red Sea” (CoralWarm). I risultati presentati in questo lavoro sono relativi a cinque popolazioni di L. pruvoti (Genova, Calafuria, Palinuro, Scilla e Pantelleria) disposte lungo un gradiente latitudinale di temperatura e irradianza nel versante occidentale della penisola italiana. I campioni sono stati raccolti mediante campionamenti mensili effettuati tramite immersioni subacquee. Su ogni campione sono state effettuate misurazioni biometriche e analisi cito-istometriche. Nelle popolazioni analizzate i parametri riproduttivi (fecondità, abbondanza, indice gonadico, dimensione) sono stati messi in relazione con la temperatura di fondo (DT, °C) e l’irradianza solare (W/m2) peculiari di ogni sito. L. pruvoti ha mostrato una sessualità gonocorica in tutti i siti considerati. In tutte le popolazioni, la presenza di due stock di ovociti e la distribuzione degli stadi di maturazione degli spermiari durante le fasi di attività riproduttiva, nell’arco dell’anno, hanno permesso di definire un periodo di reclutamento e uno di maturità gonadica, suggerendo che tali eventi siano influenzati dai cambiamenti stagionali della temperatura dell’acqua e del fotoperiodo. Nel periodo di reclutamento, la fecondità presentava una debole correlazione positiva con i parametri ambientali considerati. Al momento della maturità gonadica gli ovociti erano di dimensioni maggiori e meno numerosi rispetto al periodo precedente, nelle popolazioni con una maggiore temperatura e irradianza. Una possibile interpretazione potrebbe essere l’esistenza di un processo di fusione degli ovociti nel periodo di maturità gonadica che sembrerebbe più marcato nelle popolazioni più calde e maggiormente irradiate. La spermatogenesi, diversamente, non ha delineato finora un pattern chiaramente interpretabile. Con i dati attualmente in nostro possesso, non possiamo tuttavia escludere che le differenze riscontrate nelle dimensioni di ovociti e spermiari lungo il gradiente latitudinale considerato siano dovute a un lieve sfasamento nel raggiungimento della maturità gonadica, pur mantenendo la medesima stagionalità nel ciclo riproduttivo delle diverse popolazioni. Ulteriori studi saranno necessari per poter meglio comprendere i complessi meccanismi che regolano e controllano i processi riproduttivi al variare dei parametri ambientali. In questo modo sarà possibile considerare i risulti ottenuti nel contesto dei cambiamenti climatici globali.
Resumo:
This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.
Resumo:
Under the global change scenario, the possible effects of ocean warming were investigated on the larvae of five species of Caribbean Echinoids: Echinometra lucunter, Echinometra viridis, Clypeaster rosaceus, Tripneustes ventricosus and Lytechinus williamsi. Their thermal tolerance was evaluated rearing them for six days under different temperature regimes (26, 28, 30, 32, 34, 36°C). The larval sensitivity to the treatments was evaluated on the base of survival and growth. The rearing at higher temperatures has revealed a great suffering state of the larvae by inducing both reduction of live larvae and abnormality in their development. The extent of impact of the treatments varied from species to species, evidencing different levels of thermal tolerance. Anyway, higher temperature treatments have shown a general lethal threshold at about 34°C for most of the species. As an exception, the lethal threshold of Echinometra species was 36°C, few larvae of which being still capable of survive at the temperature of 34°C. The studies have also analyzed the effect of water warming on the larvae growth in terms of size and symmetry. The results put in evidence the presence of a critical upper temperature (about 32°C) at which the larvae of all species reveal a great suffering state that translates in the reduction of size (i.e., of body, stomach and postero-dorsal arm) and abnormalities (i.e., strong difference in the lengths of the two postero-dorsal arms). As sea surface temperatures are predicted to increase of 4-5°C by 2100, the high percentage of abnormal larvae and their scarce survival observed at 32- 34°C treatments indicate that the early stages of these species could be affected by future global warming.
Resumo:
Climate change is occurring at a faster rate than in the past, with an expected increase of mean sea surface temperatures up to 4.8°C by the end of this century. The actual capabilities of marine invertebrates to adapt to these rapid changes has still to be understood. Adult echinoids play a crucial role in the tropical ecosystems where they live. Despite their role, few studies about the effect of temperature increase on their viability have been reported in literature. This thesis work reports a first systematic study on several Caribbean echinoids about their tolerance to temperature rise in the context of global warming. The research - carried out at the Bocas del Toro Station of the Smithsonian Tropical Research Institute, in Panama - focalized on the 6 sea urchins Lytechinus variegatus, L. williamsi, Echinometra lucunter, E. viridis, Tripneustes ventricosus and Eucidaris tribuloides, and the 2 sand dollars Clypeaster rosaceus and C. subdepressus. Mortality and neuromuscular well-being indicators - such as righting response, covering behaviour, adhesion to the substrate, spine and tube feet movements - have been analysed in the temperature range 28-38°C. The righting time RT (i.e., the time necessary for the animal to right itself completely after inversion) measured in the 6 sea urchin species, demonstrated a clearly dependence on the water temperature. The experiments allowed to determine the “thermal safety margin” (TSM) of each species. Echinometra lucunter and E. viridis resulted the most tolerant species to high temperatures with a TSM of 5.5°C, while T. ventricosus was the most vulnerable with a TSM of only 3°C. The study assessed that all the species already live at temperatures close to their upper thermal limit. Their TSMs are comparable to the predicted temperature increase by 2100. In absence of acclimatization to such temperature change, these species could experience severe die-offs, with important consequences for tropical marine ecosystems.
Resumo:
Global warming and ocean acidification, due to rising atmospheric levels of CO2, represent an actual threat to terrestrial and marine environments. Since Industrial Revolution, in less of 250 years, pH of surface seawater decreased on average of 0.1 unit, and is expected to further decreases of approximately 0.3-0.4 units by the end of this century. Naturally acidified marine areas, such as CO2 vent systems at the Ischia Island, allow to study acclimatation and adaptation of individual species as well as the structure of communities, and ecosystems to OA. The main aim of this thesis was to study how hard bottom sublittoral benthic assemblages changed trough time along a pH gradient. For this purpose, the temporal dynamics of mature assemblages established on artificial substrates (volcanic tiles) over a 3 year- period were analysed. Our results revealed how composition and dynamics of the community were altered and highly simplified at different level of seawater acidification. In fact, extreme low values of pH (approximately 6.9), affected strongly the assemblages, reducing diversity both in terms of taxa and functional groups, respect to lower acidification levels (mean pH 7.8) and ambient conditions (8.1 unit). Temporal variation was observed in terms of species composition but not in functional groups. Variability was related to species belonging to the same functional group, suggesting the occurrence of functional redundancy. Therefore, the analysis of functional groups kept information on the structure, but lost information on species diversity and dynamics. Decreasing in ocean pH is only one of many future global changes that will occur at the end of this century (increase of ocean temperature, sea level rise, eutrophication etc.). The interaction between these factors and OA could exacerbate the community and ecosystem effects showed by this thesis.