6 resultados para global climate modeling

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate change in recent decades has strongly influenced the Arctic generating pronounced warming accompanied by significant reduction of sea ice in seasonally ice-covered seas and a dramatic increase of open water regions exposed to wind [Stephenson et al., 2011]. By strongly scattering the wave energy, thick multiyear ice prevents swell from penetrating deeply into the Arctic pack ice. However, with the recent changes affecting Arctic sea ice, waves gain more energy from the extended fetch and can therefore penetrate further into the pack ice. Arctic sea ice also appears weaker during melt season, extending the transition zone between thick multi-year ice and the open ocean. This region is called the Marginal Ice Zone (MIZ). In the Arctic, the MIZ is mainly encountered in the marginal seas, such as the Nordic Seas, the Barents Sea, the Beaufort Sea and the Labrador Sea. Formed by numerous blocks of sea ice of various diameters (floes) the MIZ, under certain conditions, allows maritime transportation stimulating dreams of industrial and touristic exploitation of these regions and possibly allowing, in the next future, a maritime connection between the Atlantic and the Pacific. With the increasing human presence in the Arctic, waves pose security and safety issues. As marginal seas are targeted for oil and gas exploitation, understanding and predicting ocean waves and their effects on sea ice become crucial for structure design and for real time safety of operations. The juxtaposition of waves and sea ice represents a risk for personnel and equipment deployed on ice, and may complicate critical operations such as platform evacuations. The risk is difficult to evaluate because there are no long-term observations of waves in ice, swell events are difficult to predict from local conditions, ice breakup can occur on very short time-scales and wave-ice interactions are beyond the scope of current forecasting models [Liu and Mollo-Christensen, 1988,Marko, 2003]. In this thesis, a newly developed Waves in Ice Model (WIM) [Williams et al., 2013a,Williams et al., 2013b] and its related Ocean and Sea Ice model (OSIM) will be used to study the MIZ and the improvements of wave modeling in ice infested waters. The following work has been conducted in collaboration with the Nansen Environmental and Remote Sensing Center and within the SWARP project which aims to extend operational services supporting human activity in the Arctic by including forecast of waves in ice-covered seas, forecast of sea-ice in the presence of waves and remote sensing of both waves and sea ice conditions. The WIM will be included in the downstream forecasting services provided by Copernicus marine environment monitoring service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il presente elaborato di tesi si inserisce nell’ambito del progetto europeo THESEUS (Innovative technologies for safer European coasts in a changing climate) fra i cui principali obiettivi c’è quello di fornire un’adeguata metodologia integrata per la pianificazione di strategie di difesa costiera sostenibili. Le zone costiere sono sempre più soggette agli impatti antropici, legati all’intensificazione dell’urbanizzazione, e agli effetti del global climate change, ed in particolare al conseguente sea level rise. Diventa quindi importante, in un’ottica di preservazione e di gestione, capire come gli ecosistemi costieri e i beni e servizi che essi forniscono risponderanno a questi cambiamenti ambientali. Fra questi, preponderanti sono quelli rappresentati dalle spiagge sabbiose. Al fine di valutare come differenti strategie di gestione possono influenzare il sistema spiaggia, è stata analizzata la riposta del comparto bentonico della zona intertidale di due differenti spiagge lungo la costa emiliano-romagnola. Lido di Spina è fortemente antropizzato e caratterizzato dalla presenza di infrastrutture balneari-turistiche permanenti. E’ soggetto, inoltre, a interventi di ripascimento annuali e di pulizia della spiaggia. Bellocchio, invece, è un sito naturale che presenta una spiaggia caratterizzata dall’arretramento della linea di costa causata dell’erosione, e non è soggetta a interventi di gestione finalizzati alla sua mitigazione. In questo studio è stata utilizzata la componente meiobentonica, generalmente trascurata, come indicatore chiave della vulnerabilità ecologica, mentre la zona intertidale sabbiosa è stata indagata in quanto reputata uno dei primi habitat costieri “recettore” degli eventi di flooding e degli interventi di gestione. Globalmente è stato possibile evidenziare differenze di struttura di comunità fra i due siti indagati, sottolineando come, anche questa componente sia in grado di far emergere i cambiamenti dovuti a differenti approcci di gestione delle coste sabbiose. Nella seconda parte del lavoro, invece, è stato testato un approccio metodologico innovativo, denominato “Fuzzy Bayes Ecological Model” (FBEM), sviluppato nell’ambito del progetto THESEUS. L’applicazione del FBEM in THESEUS è finalizzata alla simulazione delle risposte ecosistemiche ad eventi di flooding costiero ed al fenomeno del sea level rise. In questo elaborato, il modello è stato adottato al fine di descrivere eventuali cambiamenti dei popolamenti meiobentonici. Nello specifico, l’utilizzo del modello è servito per poter confrontare la situazione attuale relativa, quindi, allo scenario di sea level rise pari a zero, con quella ipotizzata dall’IPCC per il 2080 di sea level rise pari a 0,22 m, prendendo in considerazione otto tempi di ritorno di eventi simulati di flooding a intensità crescente. Dalle simulazioni emerge come il driver del danno ecologico sia l’onda frangente il cui effetto risulta, però, mitigato dal sea level rise. I popolamenti meiobentonici sono risultati dei buoni indicatori per la valutazione dei rischi connessi al flooding e al sea level rise, dimostrando così il loro possibile utilizzo come descrittori dei cambiamenti ecologici delle zone costiere. Per questo, lo studio ed il monitoraggio della dinamica e della struttura dei popolamenti meiobentonici può diventare un mezzo fondamentale per la comprensione delle funzionalità ecosistemiche delle spiagge sabbiose. E’ inoltre in grado di produrre alcune delle informazioni necessarie allo sviluppo dei piani di gestione integrata della fascia costiera in un ottica di conservazione di questi habitat costieri e dei servizi e beni da essi forniti.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water is the driving force in nature. We use water for washing cars, doing laundry, cooking, taking a shower, but also to generate energy and electricity. Therefore water is a necessary product in our daily lives (USGS. Howard Perlman, 2013). The model that we created is based on the urban water demand computer model from the Pacific Institute (California). With this model we will forecast the future urban water use of Emilia Romagna up to the year of 2030. We will analyze the urban water demand in Emilia Romagna that includes the 9 provinces: Bologna, Ferrara, Forli-Cesena, Modena, Parma, Piacenza, Ravenna, Reggio Emilia and Rimini. The term urban water refers to the water used in cities and suburbs and in homes in the rural areas. This will include the residential, commercial, institutional and the industrial use. In this research, we will cover the water saving technologies that can help to save water for daily use. We will project what influence these technologies have to the urban water demand, and what it can mean for future urban water demands. The ongoing climate change can reduce the snowpack, and extreme floods or droughts in Italy. The changing climate and development patterns are expected to have a significant impact on water demand in the future. We will do this by conducting different scenario analyses, by combining different population projections, climate influence and water saving technologies. In addition, we will also conduct a sensitivity analyses. The several analyses will show us how future urban water demand is likely respond to changes in water conservation technologies, population, climate, water price and consumption. I hope the research can contribute to the insight of the reader’s thoughts and opinion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mediterranean coralligenous habitats are biogenic reefs characterised by high species diversity and built mainly by encrusting calcareous red algae, growing in dim light conditions. The global climate change and several human activities may threaten species living in these habitats, especially some of those that are considered particularly relevant in structuring and in maintaining the complexity and diversity of the benthic assemblages. Among them, the red gorgonian, Paramuricea clavata (Risso, 1826), which can form dense populations, in the last decades showed worrying mass mortality events. Understand the role of this “animal forests” in the coralligenous assemblages is of fundamental importance in order to design appropriate monitoring programs and conservation policies, especially in the marine protected areas. For this purpose, benthic assemblages were studied in presence and absence of red gorgonians at two sites at the Tremiti islands. Overall, the benthic assemblages significantly differed among sites, nevertheless in both places, clear differences between assemblages associated and not associated to the gorgonian forests were found. In particular, encrusting corallinered algae were significantly more abundant in the gorgonian understories at both sites. This result indicates that the gorgonians may promote the development of calcareous algae, which are the main builders of the coralligenous habitats. Moreover species diversity resulted higher in the assemblages associated to the gorgonians. The present study highlights the role of Paramuricea clavata as a relevant ecosystem engineer in the coralligenous habitats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface based measurements systems play a key role in defining the ground truth for climate modeling and satellite product validation. The Italian-French station of Concordia is operative year round since 2005 at Dome C (75°S, 123°E, 3230 m) on the East Antarctic Plateau. A Baseline Surface Radiation Network (BSRN) site was deployed and became operational since January 2006 to measure downwelling components of the radiation budget, and successively was expanded in April 2007 to measure upwelling radiation. Hence, almost a decade of measurement is now available and suitable to define a statistically significant climatology for the radiation budget of Concordia including eventual trends, by specifically assessing the effects of clouds and water vapor on SW and LW net radiation. A well known and robust clear sky-id algorithm (Long and Ackerman, 2000) has been operationally applied on downwelling SW components to identify cloud free events and to fit a parametric equation to determine clear-sky reference along the Antarctic daylight periods (September to April). A new model for surface broadband albedo has been developed in order to better describe the features the area. Then, a novel clear-sky LW parametrization, based on a-priori assumption about inversion layer structure, combined with daily and annual oscillations of the surface temperature, have been adopted and validated. The longwave based method is successively exploited to extend cloud radiative forcing studies to nighttime period (winter). Results indicated inter-annual and intra-annual warming behaviour, i.e. 13.70 W/m2 on the average, specifically approaching neutral effect in summer, when SW CRF compensates LW CRF, and warming along the rest of the year due prevalentely to CRF induced on the LW component.