2 resultados para geological carbon sequestration

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change is affecting pelagic ecosystems with repercussions on fish production. In particular, global change is increasing oceanic temperature and stratification with decrease in nutrient input in euphotic layer leading to a decline in primary production. The mesocosm-based project Ocean Art-Up, conducted in Gran Canaria, is aimed to increase fish production and to enhance carbon sequestration through an artificial upwelling system. Diatoms dominate the phytoplankton community in upwelling systems and they need to take up silicates to grow. The abundance and nutritional value of diatoms determine the fate of phytoplankton biomass with transport to the upper level of the pelagic food web or to the deeper layer of the ocean with potential carbon sequestration. Here, data about experiments performed in 2018 and 2019 are reported. The first mesocosm experiment investigated the differences between pulsed and continuous upwelling mode, while the second experiment was conducted with a gradient in Si:N ratio along the mesocosms. The phytoplankton community takes up and incorporate silica about at the same rate in continuous mode, while in pulsed mode its peak occurred only after the deep-water addition. The diatom silica content is not affected by mode and amount of water added but by the Si:N ratio. Diatoms grown in an environment with high Si:N ratio values show higher abundance, biogenic silica production, silica uptake and silica content than the ones that experienced low Si:N values. In addition from literature, euphotic zone rich in silicate may produce high silica containing-diatoms who will produce repercussions on copepods community regarding feeding, hatching and growth, thus continuous upwelling with high Si:N ratio favours diatoms who will tend to sink and to be converted by copepods into fecal pellet rich in silica with increasing in potential carbon sequestration. Fish production may increase with continuous artificial upwelling showing low Si:N values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of my thesis was the technical-economic feasibility of a system of electricity generation integrated with CCS. The policy framework for development processing is part of the recent attention that at the political level has been directed towards the use of CCS technologies with the aim of addressing the problems of actual climate change. Several technological options have been proposed to stabilize and reduce the atmospheric concentrations of carbon dioxide (CO2) among which, the most promising for IPPC (Intergovernmental Panel on Climate Change)are the CCS technologies (Carbon Capture and Storage & Carbon Capture and Sequestration). The remedy proposed for large stationary CO2 sources as thermoelectric power plants is to separate the flue gas capturing CO2 and to store it into deep subsurface geological formations (more than 800 meters of depth). In order to support the identification of potential CO2 storage reservoirs in Italy and in Europe by Geo Capacity(an European database) new studies are developing. From the various literature data analyzed shows that most of the CO2 emitted from large stationary sources comes from the processes of electricity generation (78% of total emissions) and from (about 60%) those using coal especially. The CCS have the objective of return "to the sender" , the ground, the carbon in oxidized form (CO2) after it has been burned by man starting from its reduced form (CH4, oil and coal), then the carbon dioxide is not a "pollutant" if injected into the subsurface, CO2 is an acid reagent that interacts with the rock, with underground fluid and the characteristics of the host rock. The results showed that the CCS technology are very urgent, because unfortunately there are too many industrial sources of CO2 in assets (power plants, refineries, cement plants, steel mills) in the world who are carrying too quickly the CO2 atmospheric concentration levels to values that aren't acceptable for our dear planet.