3 resultados para genetics, statistical genetics, variable models
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Quantum clock models are statistical mechanical spin models which may be regarded as a sort of bridge between the one-dimensional quantum Ising model and the one-dimensional quantum XY model. This thesis aims to provide an exhaustive review of these models using both analytical and numerical techniques. We present some important duality transformations which allow us to recast clock models into different forms, involving for example parafermions and lattice gauge theories. Thus, the notion of topological order enters into the game opening new scenarios for possible applications, like topological quantum computing. The second part of this thesis is devoted to the numerical analysis of clock models. We explore their phase diagram under different setups, with and without chirality, starting with a transverse field and then adding a longitudinal field as well. The most important observables we take into account for diagnosing criticality are the energy gap, the magnetisation, the entanglement entropy and the correlation functions.
Resumo:
Nella tesi sono trattate due famiglie di modelli meccanico statistici su vari grafi: i modelli di spin ferromagnetici (o di Ising) e i modelli di monomero-dimero. Il primo capitolo è dedicato principalmente allo studio del lavoro di Dembo e Montanari, in cui viene risolto il modello di Ising su grafi aleatori. Nel secondo capitolo vengono studiati i modelli di monomero-dimero, a partire dal lavoro di Heilemann e Lieb,con l'intento di dare contributi nuovi alla teoria. I principali temi trattati sono disuguaglianze di correlazione, soluzioni esatte su alcuni grafi ad albero e sul grafo completo, la concentrazione dell'energia libera intorno al proprio valor medio sul grafo aleatorio diluito di Erdös-Rényi.
Resumo:
Monomer-dimer models are amongst the models in statistical mechanics which found application in many areas of science, ranging from biology to social sciences. This model describes a many-body system in which monoatomic and diatomic particles subject to hard-core interactions get deposited on a graph. In our work we provide an extension of this model to higher-order particles. The aim of our work is threefold: first we study the thermodynamic properties of the newly introduced model. We solve analytically some regular cases and find that, differently from the original, our extension admits phase transitions. Then we tackle the inverse problem, both from an analytical and numerical perspective. Finally we propose an application to aggregation phenomena in virtual messaging services.