13 resultados para galaxies: stellar content
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this thesis, I aim to study the evolution with redshift of the gas mass fraction of a sample of 53 sources (from z ∼ 0.5 to z > 5) serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate C II at Early Times (ALPINE). First, I used SED-fitting software CIGALE, which is able to implement energy balancing between the optical and the far infrared part, to produce a best-fit template of my sources and to have an estimate of some physical properties, such as the star formation rate (SFR), the total infrared luminosity and the total stellar mass. Then, using the tight correlation found by Scoville et al. (2014) between the ISM molecular gas mass and the rest-frame 850 μm luminosity, I used the latter, extrapolating it from the best-fit template using a code that I wrote in Python, as a tracer for the molecular gas. For my sample, I then derived the most important physical properties, such as molecular gas mass, gas mass fractions, specific star formation rate and depletion timescales, which allowed me to better categorize them and find them a place within the evolutionary history of the Universe. I also fitted our sources, via another code I wrote again in Python, with a general modified blackbody (MBB) model taken from the literature (Gilli et al. (2014), D’Amato et al. (2020)) to have a direct method of comparison with similar galaxies. What is evident at the end of the paper is that the methods used to derive the physical quantities of the sources are consistent with each other, and these in turn are in good agreement with what is found in the literature.
Resumo:
A recent integral-field spectroscopic (IFS) survey, the MASSIVE survey (Ma et al. 2014), observed the 116 most massive (MK < −25.3 mag, stellar mass M∗ > 10^11.6 M⊙) early-type galaxies (ETGs) within 108 Mpc, out to radii as large as 40 kpc, that correspond to ∼ 2 − 3 effective radii (Re). One of the major findings of the MASSIVE survey is that the galaxy sample is split nearly equally among three groups showing three different velocity dispersion profiles σ(R) outer of a radius ∼ 5 kpc (falling, flat and rising with radius). The purpose of this thesis is to model the kinematic profiles of six ETGs included in the MASSIVE survey and representative of the three observed σ(R) shapes, with the aim of investigating their dynamical structure. Models for the chosen galaxies are built using the numerical code JASMINE (Posacki, Pellegrini, and Ciotti 2013). The code produces models of axisymmetric galaxies, based on the solution of the Jeans equations for a multicomponent gravitational potential (supermassive black hole, stars and dark matter halo). With the aim of having a good agreement between the kinematics obtained from the Jeans equations, and the observed σ and rotation velocity V of MASSIVE (Veale et al. 2016, 2018), I derived constraints on the dark matter distribution and orbital anisotropy. This work suggests a trend of the dark matter amount and distribution with the shape of the velocity dispersion profiles in the outer regions: the models of galaxies with flat or rising velocity dispersion profiles show higher dark matter fractions fDM both within 1 Re and 5 Re. Orbital anisotropy alone cannot account for the different observed trends of σ(R) and has a minor effect compared to variations of the mass profile. Galaxies with similar stellar mass M∗ that show different velocity dispersion profiles (from falling to rising) are successfully modelled with a variation of the halo mass Mh.
Resumo:
This thesis concerns the study of the variable stars and resolved stellar populations in four recently discovered dSphs, namely, Hercules and Ursa Major I (UMa I), which are UFD satellites of the MW; Andromeda XIX (And XIX) and Andromeda XXI (And XXI), which are satellites of M31. The main aim is to obtain detailed informations on the properties (age, metallicity, distance, and Oosterhoff type) of the stellar populations in these galaxies, to compare them with those of other satellites around the MW and M31, both ''classical'' dSphs and UFDs. The observables used to achieve these goals are the pulsating variables, especially the RR Lyrae stars, and the color magnitude diagram (CMD) of the resolved stellar populations. In particular, for UMa I, we combined B, V time-series observations from four different ground-based telescopes (Cassini, TLS, TT1 and Subaru) and for Hercules, we used archival data acquired with the Advanced Camera for Surveys (ACS) on board the HST. We used, instead B and V times-series photometry obtained with the Large Binocular Telescope (LBT) for And XIX and And XXI .
Resumo:
The recent availability of multi-wavelength data revealed the presence of large reservoirs of warm and cold gas and dust in the innermost regions of the majority of massive elliptical galaxies. To prove an internal origin of cold and warm gas, the investigation of the spatially distributed cooling process which occurs because of non-linear density perturbations and subsequent thermal instabilities is of crucial importance. The first goal of this work of thesis is to investigate the internal origin of warm and cold phases. Numerical simulations are the powerful tool of analysis. The way in which a spatially distributed cooling process originates has been examined and the off-centre amount of gas mass which cools when different and differently characterized AGN feedback mechanisms operate has been quantified. This thesis demonstrates that the aforementioned non-linear density perturbations originate and develop from AGN feedback mechanisms in a natural fashion. An internal origin of the warm phase from the once hot gas is shown to be possible. Computed velocity dispersions of ionized and hot gas are similar. The cold gas as well can originate from the cooling process: indeed, it has been estimated that the surrounding stellar radiation, which is one of the most feasible sources of ionization of the warm gas, does not manage to keep ionized all the gas at 10^4 K. Therefore, cooled gas does undergo a further cooling which can lead the warm phase to lower temperatures. However, the gas which has cooled from the hot phase is expected to be dustless; nonetheless, a large fraction of early type galaxies has detectable dust in their cores, both concentrated in filamentary and disky structures and spread over larger regions. Therefore a regularly rotating disk of cold and dusty gas has been included in the simulations. A new quantitative investigation of the spatially distributed cooling process has therefore been essential: the contribution of the included amount of dust which is embedded in the cold gas does have a role in promoting and enhancing the cooling. The fate of dust which was at first embedded in cold gas has been investigated. The role of AGN feedback mechanisms in dragging (if able) cold and dusty gas from the core of massive ellipticals up to large radii has been studied.
Resumo:
Holding the major share of stellar mass in galaxies and being also old and passively evolving, early-type galaxies (ETGs) are the primary probes in investigating these various evolution scenarios, as well as being useful means to provide insights on cosmological parameters. In this thesis work I focused specifically on ETGs and on their capability in constraining galaxy formation and evolution; in particular, the principal aims were to derive some of the ETGs evolutionary parameters, such as age, metallicity and star formation history (SFH) and to study their age-redshift and mass-age relations. In order to infer galaxy physical parameters, I used the public code STARLIGHT: this program provides a best fit to the observed spectrum from a combination of many theoretical models defined in user-made libraries. the comparison between the output and input light-weighted ages shows a good agreement starting from SNRs of ∼ 10, with a bias of ∼ 2.2% and a dispersion 3%. Furthermore, also metallicities and SFHs are well reproduced. In the second part of the thesis I performed an analysis on real data, starting from Sloan Digital Sky Survey (SDSS) spectra. I found that galaxies get older with cosmic time and with increasing mass (for a fixed redshift bin); absolute light-weighted ages, instead, result independent from the fitting parameters or the synthetic models used. Metallicities, instead, are very similar from each other and clearly consistent with the ones derived from the Lick indices. The predicted SFH indicates the presence of a double burst of star formation. Velocity dispersions and extinctiona are also well constrained, following the expected behaviours. As a further step, I also fitted single SDSS spectra (with SNR∼ 20), to verify that stacked spectra gave the same results without introducing any bias: this is an important check, if one wants to apply the method at higher z, where stacked spectra are necessary to increase the SNR. Our upcoming aim is to adopt this approach also on galaxy spectra obtained from higher redshift Surveys, such as BOSS (z ∼ 0.5), zCOSMOS (z 1), K20 (z ∼ 1), GMASS (z ∼ 1.5) and, eventually, Euclid (z 2). Indeed, I am currently carrying on a preliminary study to estabilish the applicability of the method to lower resolution, as well as higher redshift (z 2) spectra, just like the Euclid ones.
Resumo:
The width of the 21 cm line (HI) emitted by spiral galaxies depends on the physical processes that release energy in the Interstellar Medium (ISM). This quantity is called velocity dispersion (σ) and it is proportional first of all to the thermal kinetic energy of the gas. The accepted theoretical picture predicts that the neutral hydrogen component (HI) exists in the ISM in two stable phases: a cold one (CNM, with σ~0.8 km/s) and a warm one (WNM, with σ~8 km/s). However, this is called into question by the observation that the HI gas has usually larger velocity dispersions. This suggests the presence of turbulence in the ISM, although the energy sources remain unknown. In this thesis we want to shed new light on this topic. We have studied the HI line emission of two nearby galaxies: NGC6946 and M101. For the latter we used new deep observations obtained with the Westerbork radio interferometer. Through a gaussian fitting procedure, we produced dispersion maps of the two galaxies. For both of them, we compared the σ values measured in the spiral arms with those in the interarms. In NGC6946 we found that, in both arms and interarms, σ grows with the column density, while we obtained the opposite for M 101. Using a statistical analysis we did not find a significant difference between arm and interarm dispersion distributions. Producing star formation rate density maps (SFRD) of the galaxies, we studied their global and local relations with the HI kinetic energy, as inferred from the measured dispersions. For NGC6946 we obtained a good log-log correlation, in agreement with a simple model of supernova feedback driven turbulence. This shows that in this galaxy turbulent motions are mainly induced by the stellar activity. For M 101 we did not find an analogous correlation, since the gas kinetic energy appears constant with the SFRD. We think that this may indicate that in this galaxy turbulence is driven also by accretion of extragalactic material.
Resumo:
Extended cluster radio galaxies show different morphologies com- pared to those found isolated in the field. Indeed, symmetric double radio galaxies are only a small percentage of the total content of ra- dio loud cluster galaxies, which show mainly tailed morphologies (e.g. O’Dea & Owen, 1985). Moreover, cluster mergers can deeply affect the statistical properties of their radio activity. In order to better understand the morphological and radio activity differences of the radio galaxies in major mergeing and non/tidal-merging clusters, we performed a multifrequency study of extended radio galax- ies inside two cluster complexes, A3528 and A3558. They belong to the innermost region of the Shapley Concentration, the most massive con- centration of galaxy clusters (termed supercluster) in the local Universe, at average redshift z ≈ 0.043. We analysed low frequency radio data performed at 235 and 610 MHz with Giant Metrewave Radio Telescope (GMRT) and we combined them with proprietary and literature observations, in order to have a wide frequency range (150 MHz to 8.4 GHz) to perform the spectral analysis. The low frequency images allowed us to carry out a detailed study of the radio tails and diffuse emission found in some cases. The results in the radio band were also qualitatively compared with the X-ray information coming from XMM-Newton observations, in order to test the interaction between radio galaxies and cluster weather. We found that the brightest central galaxies (BCGs) in the A3528 cluster complex are powerful and present substantial emission from old relativistic plasma characterized by a steep spectrum (α > 2). In the light of observational pieces of evidence, we suggest they are possible re-started radio galaxies. On the other hand, the tailed radio galaxies trace the host galaxy motion with respect to the ICM, and our find- ings is consistent with the dynamical interpretation of a tidal interaction (Gastaldello et al. 2003). On the contrary, the BCGs in the A3558 clus- ter complex are either quiet or very faint radio galaxies, supporting the hypothesis that clusters mergers quench the radio emission from AGN.
Resumo:
The aim of this thesis is to study the angular momentum of a sample of S0 galaxies. In the quest to understand whether the formation of S0 galaxies is more closely linked to that of ellipticals or that of spirals, our goal is to compare the amount of their specific angular momentum as a function of stellar mass with respect to spirals. Through kinematic comparison between these different classes of galaxies we aim to understand if a scenario of passive evolution, in which the galaxy’s gas is consumed and the star formation is quenched, can be considered as plausible mechanism to explain the transformation from spirals to S0s. In order to derive the structural and photometric parameters of galaxy sub-components we performed a bulge-disc decomposition of optical images using GALFIT. The stellar kinematic of the galaxies was measured using integral field spectroscopic data from CALIFA survey. The development of new original software, based on a Monte Carlo Markov Chain algorithm, allowed us to obtain the values of the line of sight velocity and velocity dispersion of disc and bulge components. The result that we obtained is that S0 discs have a distribution of stellar specific angular momentum that is in full agreement with that of spiral discs, so the mechanism of simple fading can be considered as one of the most important for transformation from spirals to S0s.
Resumo:
The internal dynamics of elliptical galaxies in clusters depends on many factors, including the environment in which the galaxy is located. In addition to the strong encounters with the other galaxies, we can also consider the gravitational interaction with the ubiquitous Cluster Tidal Field (CTF). As recognized in many studies, one possible way in which CTF affects the dynamics of galaxies inside the cluster is related to the fact that they may start oscillating as “rigid bodies” around their equilibrium positions in the field, with the periods of these oscillations curiously similar to those of stellar orbits in the outer parts of galaxies. Resonances between the two motions are hence expected and this phenomenon could significantly contribute to the formation of the Intracluster Stellar Population (ISP), whose presence is abundantly confirmed by observations. In this thesis work, we propose to study the motion of an elliptical galaxy, modelled as a rigid body, in the CTF, especially when its center of mass traces a quasi-circular orbit in the cluster gravitational potential. This case extends and generalizes the previous models and findings, proceeding towards a much more realistic description of galaxy motion. In addition to this, the presence of a further oscillation, namely that of the entire galaxy along its orbit, will possibly increase the probability of having resonances and, consequently, the rate of ISP production nearly to observed values. Thus, after reviewing the dynamics of a rigid body in a generic force field, we will assess some physically relevant studies and report their main results, discussing their implications with respect to our problem. We will conclude our discussion focusing on the more realistic scenario of an elliptical galaxy whose center of mass moves on a quasi-circular orbit in a spherically symmetric potential. The derivation of the fundamental equations of motion will serve as the basis for future modelling and discussions.
Resumo:
Extra mixing at the borders of convective zones in stellar interiors takes on an important role in the chemical evolution of stars and galaxies through the transport of chemical elements towards the stellar surface: knowing the overshooting mechanism can therefore lead to a better understanding of the observed chemical abundances in stellar photospheres. The comprehension of this phenomenon is quite uncertain and currently object of many studies. In particular, concerning low mass stars, in the past decades several works highlighted a discrepancy between the observed luminosity of the Red-Giant Branch bump and its prediction from simulations, which can be fixed including overshooting at the base of the convective envelope. This work, studying the Red-Giant Branch bump and using it as a diagnostic for extra mixing processes, tries to classify two different types of overshooting, instantaneous and diffusive, using both simulations from stellar models and Globular Clusters’ data. The aim is to understand which one of the two mixing processes is the most suitable in reproducing the observed stellar behaviour and, in case both of them provide reliable results, what are the conditions under which they produce the same effects on the Red-Giant Branch bump luminosity function and are consequently indistinguishable. Finally, possible dependences of overshooting efficiency on stellar parameters, such as chemical composition, are analysed.
Resumo:
The study of galaxies at high redshift plays a crucial role to understand the mechanism of galaxy formation and evolution. At redshifts just after the epoch of re-ionization (4
Resumo:
Dwarf galaxies often experience gravitational interactions from more massive companions. These interactions can deform galaxies, turn star formation on or off, or give rise to mass loss phenomena. In this thesis work we propose to study, through N-body simulations, the stellar mass loss suffered by the dwarf spheroid galaxy (dSph) Fornax orbiting in the Milky Way gravitational potential. Which is a key phenomenon to explain the mass budget problem: the Fornax globular clusters together have a stellar mass comparable to that of Fornax itself. If we look at the stellar populations which they are made of and we apply the scenarios of stellar population formation we find that, originally, they must have been >= 5 times more massive. For this reason, they must have lost or ejected stars through dynamic interactions. However, as presented in Larsen et al (2012), field stars alone are not sufficient to explain this scenario. We may assume that some of those stars fell into Fornax, and later were stripped by Milky Way. In order to study this solution we built several illustrative single component simulations, with a tabulated density model using the P07ecc orbit studied from Battaglia et al (2015). To divide the single component into stellar and dark matter components we have defined a posterior the probability function P(E), where E is the initial energy distribution of the particles. By associating each particle with a fraction of stellar mass and dark matter. In this way we built stellar density profiles without repeating simulations. We applied the method to Fornax using the profile density tables obtained in Pascale et al (2018) as observational constraints and to build the model. The results confirm the results previously obtained with less flexible models by Battaglia et al (2015). They show a stellar mass loss < 4% within 1.6 kpc and negligible within 3 kpc, too small to solve the mass budget problem.