13 resultados para galaxies: star clusters: general
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Clusters of galaxies are the most massive and large gravitationally bounded systems in the whole Universe. Their study is of fundamental importance to constrain cosmological parameters and to obtain informations regarding various kind of emission in different wavebands. In particular, in the radio domain, beside the diffuse emission, the study is focused on the radio galaxies emission. Radio galaxies in clusters can have peculiar morphology, since they interact with the intracluster medium (ICM) in which they are embedded. Particularly, in this thesis we focused our attention on the so-called Narrow-Angle Tailed radio galaxies (NAT), which present radio jets that are bent at extreme angle, up to 90 degrees, from their original orientation. Some NAT show a narrow extended structure and the two radio tails are not resolved even with high resolution radio observations. An example is provided by the source IC310, in the Perseus Cluster, whose structure has been recently interpreted as due to Doppler boosting effects of a relativistic jet oriented at a small angle with respect to the line of sight. If the structure is due to relativistic effects, this implies that the jets are relativistic at about 400 kpc from the core, but this is in contrast with unified models, which predict that for low-power radio source (NAT are classified as FRI radio galaxies) the jets decelerate to sub-relativistic speed within a few kpc from the core. To investigate this scientific topic, in this thesis we have analyzed the innermost structure of a sample of eleven radio galaxies showing a very narrow NAT structure. We can conclude that the structure of these radio galaxies is different from that of IC310. These radio galaxies are indeed strongly influenced by environmental effects and are similar to classical NAT sources.
Resumo:
The internal dynamics of elliptical galaxies in clusters depends on many factors, including the environment in which the galaxy is located. In addition to the strong encounters with the other galaxies, we can also consider the gravitational interaction with the ubiquitous Cluster Tidal Field (CTF). As recognized in many studies, one possible way in which CTF affects the dynamics of galaxies inside the cluster is related to the fact that they may start oscillating as “rigid bodies” around their equilibrium positions in the field, with the periods of these oscillations curiously similar to those of stellar orbits in the outer parts of galaxies. Resonances between the two motions are hence expected and this phenomenon could significantly contribute to the formation of the Intracluster Stellar Population (ISP), whose presence is abundantly confirmed by observations. In this thesis work, we propose to study the motion of an elliptical galaxy, modelled as a rigid body, in the CTF, especially when its center of mass traces a quasi-circular orbit in the cluster gravitational potential. This case extends and generalizes the previous models and findings, proceeding towards a much more realistic description of galaxy motion. In addition to this, the presence of a further oscillation, namely that of the entire galaxy along its orbit, will possibly increase the probability of having resonances and, consequently, the rate of ISP production nearly to observed values. Thus, after reviewing the dynamics of a rigid body in a generic force field, we will assess some physically relevant studies and report their main results, discussing their implications with respect to our problem. We will conclude our discussion focusing on the more realistic scenario of an elliptical galaxy whose center of mass moves on a quasi-circular orbit in a spherically symmetric potential. The derivation of the fundamental equations of motion will serve as the basis for future modelling and discussions.
Resumo:
Gravitational lensing is a powerful tool to investigate the properties of the distribution of matter, be it barionic or dark. In this work we take advantage of Strong Gravitational Lensing to infer the properties of one of the galaxy-scale substructures that makes up the cluster MACSJ1206. It is relatively easy to model the morphology of the visible components of a galaxy, while the morphology of the dark matter distribution cannot be so easily constrained. Being sensitive to the whole mass, strong lensing provides a way to probe DM distribution, and this is the reason why it is the best tool to study the substructure. The goal of this work consists of performing an analysis of the substructure previously mentioned, an early type galaxy (ETG), by analyzing the highly magnified Einstein ring around it, in order to put stringent constraints on its matter distribution, that, for an ETG, is commonly well described by an isothermal profilele. This turns out to be interesting for three main different reasons. It is well known that galaxies in clusters are subject to interaction processes, both dynamic and hydrodynamic, that can significantly modify the distribution of matter within them. Therefore, finding a different profile from the one usually expected could be a sign that the galaxy has undergone processes that have changed its structure. Studying the mass distribution also means studying the dark matter component, which not only still presents great questions today, but which is also not obviously distributed in the same way as in an isolated galaxy. What emerges from the analysis is that the total mass distribution of the galaxy under examination turns out to have a slope much steeper than the isothermal usually expected.
Resumo:
In this thesis, I aim to study the evolution with redshift of the gas mass fraction of a sample of 53 sources (from z ∼ 0.5 to z > 5) serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate C II at Early Times (ALPINE). First, I used SED-fitting software CIGALE, which is able to implement energy balancing between the optical and the far infrared part, to produce a best-fit template of my sources and to have an estimate of some physical properties, such as the star formation rate (SFR), the total infrared luminosity and the total stellar mass. Then, using the tight correlation found by Scoville et al. (2014) between the ISM molecular gas mass and the rest-frame 850 μm luminosity, I used the latter, extrapolating it from the best-fit template using a code that I wrote in Python, as a tracer for the molecular gas. For my sample, I then derived the most important physical properties, such as molecular gas mass, gas mass fractions, specific star formation rate and depletion timescales, which allowed me to better categorize them and find them a place within the evolutionary history of the Universe. I also fitted our sources, via another code I wrote again in Python, with a general modified blackbody (MBB) model taken from the literature (Gilli et al. (2014), D’Amato et al. (2020)) to have a direct method of comparison with similar galaxies. What is evident at the end of the paper is that the methods used to derive the physical quantities of the sources are consistent with each other, and these in turn are in good agreement with what is found in the literature.
The gas mass fraction and the dynamical state in x-ray luminous clusters of galaxies at low redshift
Resumo:
Gli ammassi di galassie sono le strutture gravitazionalmente legate con le più profonde buche di potenziale, pertanto è previsto che questi contengano una frazione di barioni non molto diversa da quella cosmologica. Con l’introduzione di modelli sempre più accurati di fisica barionica all’interno di simulazioni idrodinamiche è stato possibile predire la percentuale cosmica di barioni presente negli ammassi di galassie. Unendo questi modelli previsionali con misure della frazione di gas in ammassi e informazioni sulla densità di barioni dell’Universo si può ottenere una stima della densità di materia cosmica Ωm. L'obiettivo di questo lavoro di Tesi è la stima di Ωm a partire dalla frazione di gas osservata in questi sistemi. Questo lavoro era stato già fatto in precedenza, ma tenendo in considerazione solo gli ammassi più massivi e dinamicamente rilassati. Usando parametri che caratterizzano la morfologia della distribuzione di brillanza superficiale nei raggi X, abbiamo classificato i nostri oggetti come rilassati o disturbati, laddove presentassero evidenze di recenti attività di interazione. Abbiamo dunque valutato l’impatto degli oggetti disturbati sulla stima del parametro cosmologico Ωm, computando il Chi2 tra la frazione di massa barionica nell’Universo e quella da noi ricavata. Infine abbiamo investigato una relazione tra il valore della frazione di gas degli ammassi rilassati e quello dei disturbati, in modo da correggere quindi questi ultimi, riportandoli nei dintorni del valore medio per i rilassati e usarli per ampliare il campione e porre un vincolo più stringente su Ωm. Anche con il limitato campione a nostra disposizione, è stato possibile porre un vincolo più stretto su Ωm, utilizzando un maggior numero di oggetti e riducendo così l’errore statistico.
Resumo:
Microprocessori basati su singolo processore (CPU), hanno visto una rapida crescita di performances ed un abbattimento dei costi per circa venti anni. Questi microprocessori hanno portato una potenza di calcolo nell’ordine del GFLOPS (Giga Floating Point Operation per Second) sui PC Desktop e centinaia di GFLOPS su clusters di server. Questa ascesa ha portato nuove funzionalità nei programmi, migliori interfacce utente e tanti altri vantaggi. Tuttavia questa crescita ha subito un brusco rallentamento nel 2003 a causa di consumi energetici sempre più elevati e problemi di dissipazione termica, che hanno impedito incrementi di frequenza di clock. I limiti fisici del silicio erano sempre più vicini. Per ovviare al problema i produttori di CPU (Central Processing Unit) hanno iniziato a progettare microprocessori multicore, scelta che ha avuto un impatto notevole sulla comunità degli sviluppatori, abituati a considerare il software come una serie di comandi sequenziali. Quindi i programmi che avevano sempre giovato di miglioramenti di prestazioni ad ogni nuova generazione di CPU, non hanno avuto incrementi di performance, in quanto essendo eseguiti su un solo core, non beneficiavano dell’intera potenza della CPU. Per sfruttare appieno la potenza delle nuove CPU la programmazione concorrente, precedentemente utilizzata solo su sistemi costosi o supercomputers, è diventata una pratica sempre più utilizzata dagli sviluppatori. Allo stesso tempo, l’industria videoludica ha conquistato una fetta di mercato notevole: solo nel 2013 verranno spesi quasi 100 miliardi di dollari fra hardware e software dedicati al gaming. Le software houses impegnate nello sviluppo di videogames, per rendere i loro titoli più accattivanti, puntano su motori grafici sempre più potenti e spesso scarsamente ottimizzati, rendendoli estremamente esosi in termini di performance. Per questo motivo i produttori di GPU (Graphic Processing Unit), specialmente nell’ultimo decennio, hanno dato vita ad una vera e propria rincorsa alle performances che li ha portati ad ottenere dei prodotti con capacità di calcolo vertiginose. Ma al contrario delle CPU che agli inizi del 2000 intrapresero la strada del multicore per continuare a favorire programmi sequenziali, le GPU sono diventate manycore, ovvero con centinaia e centinaia di piccoli cores che eseguono calcoli in parallelo. Questa immensa capacità di calcolo può essere utilizzata in altri campi applicativi? La risposta è si e l’obiettivo di questa tesi è proprio quello di constatare allo stato attuale, in che modo e con quale efficienza pùo un software generico, avvalersi dell’utilizzo della GPU invece della CPU.
Resumo:
Holding the major share of stellar mass in galaxies and being also old and passively evolving, early-type galaxies (ETGs) are the primary probes in investigating these various evolution scenarios, as well as being useful means to provide insights on cosmological parameters. In this thesis work I focused specifically on ETGs and on their capability in constraining galaxy formation and evolution; in particular, the principal aims were to derive some of the ETGs evolutionary parameters, such as age, metallicity and star formation history (SFH) and to study their age-redshift and mass-age relations. In order to infer galaxy physical parameters, I used the public code STARLIGHT: this program provides a best fit to the observed spectrum from a combination of many theoretical models defined in user-made libraries. the comparison between the output and input light-weighted ages shows a good agreement starting from SNRs of ∼ 10, with a bias of ∼ 2.2% and a dispersion 3%. Furthermore, also metallicities and SFHs are well reproduced. In the second part of the thesis I performed an analysis on real data, starting from Sloan Digital Sky Survey (SDSS) spectra. I found that galaxies get older with cosmic time and with increasing mass (for a fixed redshift bin); absolute light-weighted ages, instead, result independent from the fitting parameters or the synthetic models used. Metallicities, instead, are very similar from each other and clearly consistent with the ones derived from the Lick indices. The predicted SFH indicates the presence of a double burst of star formation. Velocity dispersions and extinctiona are also well constrained, following the expected behaviours. As a further step, I also fitted single SDSS spectra (with SNR∼ 20), to verify that stacked spectra gave the same results without introducing any bias: this is an important check, if one wants to apply the method at higher z, where stacked spectra are necessary to increase the SNR. Our upcoming aim is to adopt this approach also on galaxy spectra obtained from higher redshift Surveys, such as BOSS (z ∼ 0.5), zCOSMOS (z 1), K20 (z ∼ 1), GMASS (z ∼ 1.5) and, eventually, Euclid (z 2). Indeed, I am currently carrying on a preliminary study to estabilish the applicability of the method to lower resolution, as well as higher redshift (z 2) spectra, just like the Euclid ones.
Resumo:
The mass estimation of galaxy clusters is a crucial point for modern cosmology, and can be obtained by several different techniques. In this work we discuss a new method to measure the mass of galaxy clusters connecting the gravitational potential of the cluster with the kinematical properties of its surroundings. We explore the dynamics of the structures located in the region outside virialized cluster, We identify groups of galaxies, as sheets or filaments, in the cluster outer region, and model how the cluster gravitational potential perturbs the motion of these structures from the Hubble fow. This identification is done in the redshift space where we look for overdensities with a filamentary shape. Then we use a radial mean velocity profile that has been found as a quite universal trend in simulations, and we fit the radial infall velocity profile of the overdensities found. The method has been tested on several cluster-size haloes from cosmological N-body simulations giving results in very good agreement with the true values of virial masses of the haloes and orientation of the sheets. We then applied the method to the Coma cluster and even in this case we found a good correspondence with previous. It is possible to notice a mass discrepancy between sheets with different alignments respect to the center of the cluster. This difference can be used to reproduce the shape of the cluster, and to demonstrate that the spherical symmetry is not always a valid assumption. In fact, if the cluster is not spherical, sheets oriented along different axes should feel a slightly different gravitational potential, and so give different masses as result of the analysis described before. Even this estimation has been tested on cosmological simulations and then applied to Coma, showing the actual non-sphericity of this cluster.
Resumo:
The width of the 21 cm line (HI) emitted by spiral galaxies depends on the physical processes that release energy in the Interstellar Medium (ISM). This quantity is called velocity dispersion (σ) and it is proportional first of all to the thermal kinetic energy of the gas. The accepted theoretical picture predicts that the neutral hydrogen component (HI) exists in the ISM in two stable phases: a cold one (CNM, with σ~0.8 km/s) and a warm one (WNM, with σ~8 km/s). However, this is called into question by the observation that the HI gas has usually larger velocity dispersions. This suggests the presence of turbulence in the ISM, although the energy sources remain unknown. In this thesis we want to shed new light on this topic. We have studied the HI line emission of two nearby galaxies: NGC6946 and M101. For the latter we used new deep observations obtained with the Westerbork radio interferometer. Through a gaussian fitting procedure, we produced dispersion maps of the two galaxies. For both of them, we compared the σ values measured in the spiral arms with those in the interarms. In NGC6946 we found that, in both arms and interarms, σ grows with the column density, while we obtained the opposite for M 101. Using a statistical analysis we did not find a significant difference between arm and interarm dispersion distributions. Producing star formation rate density maps (SFRD) of the galaxies, we studied their global and local relations with the HI kinetic energy, as inferred from the measured dispersions. For NGC6946 we obtained a good log-log correlation, in agreement with a simple model of supernova feedback driven turbulence. This shows that in this galaxy turbulent motions are mainly induced by the stellar activity. For M 101 we did not find an analogous correlation, since the gas kinetic energy appears constant with the SFRD. We think that this may indicate that in this galaxy turbulence is driven also by accretion of extragalactic material.
Resumo:
Extended cluster radio galaxies show different morphologies com- pared to those found isolated in the field. Indeed, symmetric double radio galaxies are only a small percentage of the total content of ra- dio loud cluster galaxies, which show mainly tailed morphologies (e.g. O’Dea & Owen, 1985). Moreover, cluster mergers can deeply affect the statistical properties of their radio activity. In order to better understand the morphological and radio activity differences of the radio galaxies in major mergeing and non/tidal-merging clusters, we performed a multifrequency study of extended radio galax- ies inside two cluster complexes, A3528 and A3558. They belong to the innermost region of the Shapley Concentration, the most massive con- centration of galaxy clusters (termed supercluster) in the local Universe, at average redshift z ≈ 0.043. We analysed low frequency radio data performed at 235 and 610 MHz with Giant Metrewave Radio Telescope (GMRT) and we combined them with proprietary and literature observations, in order to have a wide frequency range (150 MHz to 8.4 GHz) to perform the spectral analysis. The low frequency images allowed us to carry out a detailed study of the radio tails and diffuse emission found in some cases. The results in the radio band were also qualitatively compared with the X-ray information coming from XMM-Newton observations, in order to test the interaction between radio galaxies and cluster weather. We found that the brightest central galaxies (BCGs) in the A3528 cluster complex are powerful and present substantial emission from old relativistic plasma characterized by a steep spectrum (α > 2). In the light of observational pieces of evidence, we suggest they are possible re-started radio galaxies. On the other hand, the tailed radio galaxies trace the host galaxy motion with respect to the ICM, and our find- ings is consistent with the dynamical interpretation of a tidal interaction (Gastaldello et al. 2003). On the contrary, the BCGs in the A3558 clus- ter complex are either quiet or very faint radio galaxies, supporting the hypothesis that clusters mergers quench the radio emission from AGN.
Resumo:
The aim of this thesis is to study the angular momentum of a sample of S0 galaxies. In the quest to understand whether the formation of S0 galaxies is more closely linked to that of ellipticals or that of spirals, our goal is to compare the amount of their specific angular momentum as a function of stellar mass with respect to spirals. Through kinematic comparison between these different classes of galaxies we aim to understand if a scenario of passive evolution, in which the galaxy’s gas is consumed and the star formation is quenched, can be considered as plausible mechanism to explain the transformation from spirals to S0s. In order to derive the structural and photometric parameters of galaxy sub-components we performed a bulge-disc decomposition of optical images using GALFIT. The stellar kinematic of the galaxies was measured using integral field spectroscopic data from CALIFA survey. The development of new original software, based on a Monte Carlo Markov Chain algorithm, allowed us to obtain the values of the line of sight velocity and velocity dispersion of disc and bulge components. The result that we obtained is that S0 discs have a distribution of stellar specific angular momentum that is in full agreement with that of spiral discs, so the mechanism of simple fading can be considered as one of the most important for transformation from spirals to S0s.
Resumo:
The study of galaxies at high redshift plays a crucial role to understand the mechanism of galaxy formation and evolution. At redshifts just after the epoch of re-ionization (4
Resumo:
Dwarf galaxies often experience gravitational interactions from more massive companions. These interactions can deform galaxies, turn star formation on or off, or give rise to mass loss phenomena. In this thesis work we propose to study, through N-body simulations, the stellar mass loss suffered by the dwarf spheroid galaxy (dSph) Fornax orbiting in the Milky Way gravitational potential. Which is a key phenomenon to explain the mass budget problem: the Fornax globular clusters together have a stellar mass comparable to that of Fornax itself. If we look at the stellar populations which they are made of and we apply the scenarios of stellar population formation we find that, originally, they must have been >= 5 times more massive. For this reason, they must have lost or ejected stars through dynamic interactions. However, as presented in Larsen et al (2012), field stars alone are not sufficient to explain this scenario. We may assume that some of those stars fell into Fornax, and later were stripped by Milky Way. In order to study this solution we built several illustrative single component simulations, with a tabulated density model using the P07ecc orbit studied from Battaglia et al (2015). To divide the single component into stellar and dark matter components we have defined a posterior the probability function P(E), where E is the initial energy distribution of the particles. By associating each particle with a fraction of stellar mass and dark matter. In this way we built stellar density profiles without repeating simulations. We applied the method to Fornax using the profile density tables obtained in Pascale et al (2018) as observational constraints and to build the model. The results confirm the results previously obtained with less flexible models by Battaglia et al (2015). They show a stellar mass loss < 4% within 1.6 kpc and negligible within 3 kpc, too small to solve the mass budget problem.