2 resultados para fuzzy based evaluation method

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ITA]La demenza consiste nel deterioramento, spesso progressivo, dello stato cognitivo di un individuo. Chi è affetto da demenza, presenta alterazioni a livello cognitivo, comportamentale e motorio, ad esempio compiendo gesti ossessivi, ripetitivi, senza uno scopo preciso. La condizione dei pazienti affetti da demenza è valutata clinicamente tramite apposite scale e le informazioni relative al comportamento vengono raccolte intervistando chi se ne occupa, come familiari, il personale infermieristico o il medico curante. Spesso queste valutazioni si rivelano inaccurate, possono essere fortemente influenzate da considerazioni soggettive, e sono dispendiose in termini di tempo. Si ha quindi l'esigenza di disporre di metodiche oggettive per valutare il comportamento motorio dei pazienti e le sue alterazioni patologiche; i sensori inerziali indossabili potrebbero costituire una valida soluzione, per questo scopo. L'obiettivo principale della presente attività di tesi è stato definire e implementare un software per una valutazione oggettiva, basata su sensori, del pattern motorio circadiano, in pazienti affetti da demenza ricoverati in un'unità di terapia a lungo termine, che potrebbe evidenziare differenze nei sintomi della malattia che interessano il comportamento motorio, come descritto in ambito clinico. Lo scopo secondario è stato quello di verificare i cambiamenti motori pre- e post-intervento in un sottogruppo di pazienti, a seguito della somministrazione di un programma sperimentale di intervento basato su esercizi fisici. --------------- [ENG]Dementia involves deterioration, often progressive, of a person's cognitive status. Those who suffer from dementia, present alterations in cognitive and motor behavior, for example performing obsessive and repetitive gestures, without a purpose. The condition of patients suffering from dementia is clinically assessed by means of specific scales and information relating to the behavior are collected by interviewing caregivers, such as the family, nurses, or the doctor. Often it turns out that these are inaccurate assessments that may be heavily influenced by subjective evaluations and are costly in terms of time. Therefore, there is the need for objective methods to assess the patients' motor behavior and the pathological changes; wearable inertial sensors may represent a viable option, so this aim. The main objective of this thesis project was to define and implement a software for a sensor-based assessment of the circadian motor pattern in patients suffering from dementia, hospitalized in a long-term care unit, which could highlight differences in the disease symptoms affecting the motor behavior, as described in the clinical setting. The secondary objective was to verify pre- and post-intervention changes in the motor patterns of a subgroup of patients, following the administration of an experimental program of intervention based on physical exercises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Intelligence (AI) is gaining ever more ground in every sphere of human life, to the point that it is now even used to pass sentences in courts. The use of AI in the field of Law is however deemed quite controversial, as it could provide more objectivity yet entail an abuse of power as well, given that bias in algorithms behind AI may cause lack of accuracy. As a product of AI, machine translation is being increasingly used in the field of Law too in order to translate laws, judgements, contracts, etc. between different languages and different legal systems. In the legal setting of Company Law, accuracy of the content and suitability of terminology play a crucial role within a translation task, as any addition or omission of content or mistranslation of terms could entail legal consequences for companies. The purpose of the present study is to first assess which neural machine translation system between DeepL and ModernMT produces a more suitable translation from Italian into German of the atto costitutivo of an Italian s.r.l. in terms of accuracy of the content and correctness of terminology, and then to assess which translation proves to be closer to a human reference translation. In order to achieve the above-mentioned aims, two human and automatic evaluations are carried out based on the MQM taxonomy and the BLEU metric. Results of both evaluations show an overall better performance delivered by ModernMT in terms of content accuracy, suitability of terminology, and closeness to a human translation. As emerged from the MQM-based evaluation, its accuracy and terminology errors account for just 8.43% (as opposed to DeepL’s 9.22%), while it obtains an overall BLEU score of 29.14 (against DeepL’s 27.02). The overall performances however show that machines still face barriers in overcoming semantic complexity, tackling polysemy, and choosing domain-specific terminology, which suggests that the discrepancy with human translation may still be remarkable.