2 resultados para fractional differential equations
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il trattamento numerico dell'equazione di convezione-diffusione con le relative condizioni al bordo, comporta la risoluzione di sistemi lineari algebrici di grandi dimensioni in cui la matrice dei coefficienti è non simmetrica. Risolutori iterativi basati sul sottospazio di Krylov sono ampiamente utilizzati per questi sistemi lineari la cui risoluzione risulta particolarmente impegnativa nel caso di convezione dominante. In questa tesi vengono analizzate alcune strategie di precondizionamento, atte ad accelerare la convergenza di questi metodi iterativi. Vengono confrontati sperimentalmente precondizionatori molto noti come ILU e iterazioni di tipo inner-outer flessibile. Nel caso in cui i coefficienti del termine di convezione siano a variabili separabili, proponiamo una nuova strategia di precondizionamento basata sull'approssimazione, mediante equazione matriciale, dell'operatore differenziale di convezione-diffusione. L'azione di questo nuovo precondizionatore sfrutta in modo opportuno recenti risolutori efficienti per equazioni matriciali lineari. Vengono riportati numerosi esperimenti numerici per studiare la dipendenza della performance dei diversi risolutori dalla scelta del termine di convezione, e dai parametri di discretizzazione.
Resumo:
In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.