2 resultados para forums

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most undervalued problems by smartphone users is the security of data on their mobile devices. Today smartphones and tablets are used to send messages and photos and especially to stay connected with social networks, forums and other platforms. These devices contain a lot of private information like passwords, phone numbers, private photos, emails, etc. and an attacker may choose to steal or destroy this information. The main topic of this thesis is the security of the applications present on the most popular stores (App Store for iOS and Play Store for Android) and of their mechanisms for the management of security. The analysis is focused on how the architecture of the two systems protects users from threats and highlights the real presence of malware and spyware in their respective application stores. The work described in subsequent chapters explains the study of the behavior of 50 Android applications and 50 iOS applications performed using network analysis software. Furthermore, this thesis presents some statistics about malware and spyware present on the respective stores and the permissions they require. At the end the reader will be able to understand how to recognize malicious applications and which of the two systems is more suitable for him. This is how this thesis is structured. The first chapter introduces the security mechanisms of the Android and iOS platform architectures and the security mechanisms of their respective application stores. The Second chapter explains the work done, what, why and how we have chosen the tools needed to complete our analysis. The third chapter discusses about the execution of tests, the protocol followed and the approach to assess the “level of danger” of each application that has been checked. The fourth chapter explains the results of the tests and introduces some statistics on the presence of malicious applications on Play Store and App Store. The fifth chapter is devoted to the study of the users, what they think about and how they might avoid malicious applications. The sixth chapter seeks to establish, following our methodology, what application store is safer. In the end, the seventh chapter concludes the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays communication is switching from a centralized scenario, where communication media like newspapers, radio, TV programs produce information and people are just consumers, to a completely different decentralized scenario, where everyone is potentially an information producer through the use of social networks, blogs, forums that allow a real-time worldwide information exchange. These new instruments, as a result of their widespread diffusion, have started playing an important socio-economic role. They are the most used communication media and, as a consequence, they constitute the main source of information enterprises, political parties and other organizations can rely on. Analyzing data stored in servers all over the world is feasible by means of Text Mining techniques like Sentiment Analysis, which aims to extract opinions from huge amount of unstructured texts. This could lead to determine, for instance, the user satisfaction degree about products, services, politicians and so on. In this context, this dissertation presents new Document Sentiment Classification methods based on the mathematical theory of Markov Chains. All these approaches bank on a Markov Chain based model, which is language independent and whose killing features are simplicity and generality, which make it interesting with respect to previous sophisticated techniques. Every discussed technique has been tested in both Single-Domain and Cross-Domain Sentiment Classification areas, comparing performance with those of other two previous works. The performed analysis shows that some of the examined algorithms produce results comparable with the best methods in literature, with reference to both single-domain and cross-domain tasks, in $2$-classes (i.e. positive and negative) Document Sentiment Classification. However, there is still room for improvement, because this work also shows the way to walk in order to enhance performance, that is, a good novel feature selection process would be enough to outperform the state of the art. Furthermore, since some of the proposed approaches show promising results in $2$-classes Single-Domain Sentiment Classification, another future work will regard validating these results also in tasks with more than $2$ classes.