8 resultados para flaw detection techniques

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The research project object of this thesis is focused on the development of an advanced analytical system based on the combination of an improved thin layer chromatography (TLC) plate coupled with infrared (FTIR) and Raman microscopies for the detection of synthetic dyes. Indeed, the characterization of organic colorants, which are commonly present in mixtures with other components and in a very limited amount, still represents a challenging task in scientific analyses of cultural heritage materials. The approach provides selective spectral fingerprints for each compound, foreseeing the complementary information obtained by micro ATR-RAIRS-FTIR and SERS-Raman analyses, which can be performed on the same separated spot. In particular, silver iodide (AgI) applied on a gold coated slide is proposed as an efficient stationary phase for the discrimination of complex analyte mixtures, such as dyes present in samples of art-historical interest. The gold-AgI-TLC plate shows high performances related both to the chromatographic separation of analytes and to the spectroscopic detection of components. The use of a mid-IR transparent inorganic salt as the stationary phase avoids interferences of the background absorption in FTIR investigations. Moreover, by ATR microscopy measurements performed on the gold-AgI surface, a considerable enhancement in the intensity of spectra is observed. Complementary information can be obtained by Raman analyses, foreseeing a SERS activity of the AgI substrate. The method has been tested for the characterization of a mixture of three synthetic organic colorants widely used in dyeing processes: Brilliant Green (BG1), Rhodamine B (BV10) and Methylene Blue (BB9).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lo studio dell’intelligenza artificiale si pone come obiettivo la risoluzione di una classe di problemi che richiedono processi cognitivi difficilmente codificabili in un algoritmo per essere risolti. Il riconoscimento visivo di forme e figure, l’interpretazione di suoni, i giochi a conoscenza incompleta, fanno capo alla capacità umana di interpretare input parziali come se fossero completi, e di agire di conseguenza. Nel primo capitolo della presente tesi sarà costruito un semplice formalismo matematico per descrivere l’atto di compiere scelte. Il processo di “apprendimento” verrà descritto in termini della massimizzazione di una funzione di prestazione su di uno spazio di parametri per un ansatz di una funzione da uno spazio vettoriale ad un insieme finito e discreto di scelte, tramite un set di addestramento che descrive degli esempi di scelte corrette da riprodurre. Saranno analizzate, alla luce di questo formalismo, alcune delle più diffuse tecniche di artificial intelligence, e saranno evidenziate alcune problematiche derivanti dall’uso di queste tecniche. Nel secondo capitolo lo stesso formalismo verrà applicato ad una ridefinizione meno intuitiva ma più funzionale di funzione di prestazione che permetterà, per un ansatz lineare, la formulazione esplicita di un set di equazioni nelle componenti del vettore nello spazio dei parametri che individua il massimo assoluto della funzione di prestazione. La soluzione di questo set di equazioni sarà trattata grazie al teorema delle contrazioni. Una naturale generalizzazione polinomiale verrà inoltre mostrata. Nel terzo capitolo verranno studiati più nel dettaglio alcuni esempi a cui quanto ricavato nel secondo capitolo può essere applicato. Verrà introdotto il concetto di grado intrinseco di un problema. Verranno inoltre discusse alcuni accorgimenti prestazionali, quali l’eliminazione degli zeri, la precomputazione analitica, il fingerprinting e il riordino delle componenti per lo sviluppo parziale di prodotti scalari ad alta dimensionalità. Verranno infine introdotti i problemi a scelta unica, ossia quella classe di problemi per cui è possibile disporre di un set di addestramento solo per una scelta. Nel quarto capitolo verrà discusso più in dettaglio un esempio di applicazione nel campo della diagnostica medica per immagini, in particolare verrà trattato il problema della computer aided detection per il rilevamento di microcalcificazioni nelle mammografie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last twenty years aerospace and automotive industries started working widely with composite materials, which are not easy to test using classic Non-Destructive Inspection (NDI) techniques. Pairwise, the development of safety regulations sets higher and higher standards for the qualification and certification of those materials. In this thesis a new concept of a Non-Destructive defect detection technique is proposed, based on Ultrawide-Band (UWB) Synthetic Aperture Radar (SAR) imaging. Similar SAR methods are yet applied either in minefield [22] and head stroke [14] detection. Moreover feasibility studies have already demonstrated the validity of defect detection by means of UWB radars [12, 13]. The system was designed using a cheap commercial off-the-shelf radar device by Novelda and several tests of the developed system have been performed both on metallic specimen (aluminum plate) and on composite coupon (carbon fiber). The obtained results confirm the feasibility of the method and highlight the good performance of the developed system considered the radar resolution. In particular, the system is capable of discerning healthy coupons from damaged ones, and correctly reconstruct the reflectivity image of the tested defects, namely a 8 x 8 mm square bulge and a 5 mm drilled holes on metal specimen and a 5 mm drilled hole on composite coupon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffusion on networks is a convenient framework to describe transport systems of different nature (from biological transport systems to urban mobility). The mathematical models are based on master equations that describe the diffusion processes by means of the weighted Laplacian matrix that connects the nodes. The link weight represent the coupling strength between the nodes. In this thesis we cope with the problem of localizing a single-edge failure that occurs in the network. An edge failure is meant to be as a sudden decrease of its transport capacities. An incomplete observation of the dynamical state of the network is available. An optimal clustering procedure based on the correlation properties among the node states is proposed. The network dimensionality is then reduced introducing representative nodes for each cluster, whose dynamical state is observed. We check the efficiency of the failure localization for our clustering method in comparison with more traditional techniques, using different graph configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correctness of information gathered in production environments is an essential part of quality assurance processes in many industries, this task is often performed by human resources who visually take annotations in various steps of the production flow. Depending on the performed task the correlation between where exactly the information is gathered and what it represents is more than often lost in the process. The lack of labeled data places a great boundary on the application of deep neural networks aimed at object detection tasks, moreover supervised training of deep models requires a great amount of data to be available. Reaching an adequate large collection of labeled images through classic techniques of data annotations is an exhausting and costly task to perform, not always suitable for every scenario. A possible solution is to generate synthetic data that replicates the real one and use it to fine-tune a deep neural network trained on one or more source domains to a different target domain. The purpose of this thesis is to show a real case scenario where the provided data were both in great scarcity and missing the required annotations. Sequentially a possible approach is presented where synthetic data has been generated to address those issues while standing as a training base of deep neural networks for object detection, capable of working on images taken in production-like environments. Lastly, it compares performance on different types of synthetic data and convolutional neural networks used as backbones for the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of radiofrequency is distributed in such a way that it is fixed to certain users called licensed users and it cannot be used by unlicensed users even though the spectrum is not in use. This inefficient use of spectrum leads to spectral holes. To overcome the problem of spectral holes and increase the efficiency of the spectrum, Cognitive Radio (CR) was used and all simulation work was done on MATLAB. Here analyzed the performance of different spectrum sensing techniques as Match filter based spectrum sensing and energy detection, which depend on various factors, systems such as Numbers of input, signal-to-noise ratio ( SNR Ratio), QPSK system and BPSK system, and different fading channels, to identify the best possible channels and systems for spectrum sensing and improving the probability of detection. The study resulted that an averaging filter being better than an IIR filter. As the number of inputs and SNR increased, the probability of detection also improved. The Rayleigh fading channel has a better performance compared to the Rician and Nakagami fading channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of dataset fusion techniques to an object detection task, involving the use of deep learning as convolutional neural networks, to manage to create a single RCNN architecture able to inference with good performances on two distinct datasets with different domains.