3 resultados para factor analytic model

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary goal of this work is related to the extension of an analytic electro-optical model. It will be used to describe single-junction crystalline silicon solar cells and a silicon/perovskite tandem solar cell in the presence of light-trapping in order to calculate efficiency limits for such a device. In particular, our tandem system is composed by crystalline silicon and a perovskite structure material: metilammoniumleadtriiodide (MALI). Perovskite are among the most convenient materials for photovoltaics thanks to their reduced cost and increasing efficiencies. Solar cell efficiencies of devices using these materials increased from 3.8% in 2009 to a certified 20.1% in 2014 making this the fastest-advancing solar technology to date. Moreover, texturization increases the amount of light which can be absorbed through an active layer. Using Green’s formalism it is possible to calculate the photogeneration rate of a single-layer structure with Lambertian light trapping analytically. In this work we go further: we study the optical coupling between the two cells in our tandem system in order to calculate the photogeneration rate of the whole structure. We also model the electronic part of such a device by considering the perovskite top cell as an ideal diode and solving the drift-diffusion equation with appropriate boundary conditions for the silicon bottom cell. We have a four terminal structure, so our tandem system is totally unconstrained. Then we calculate the efficiency limits of our tandem including several recombination mechanisms such as Auger, SRH and surface recombination. We focus also on the dependence of the results on the band gap of the perovskite and we calculare an optimal band gap to optimize the tandem efficiency. The whole work has been continuously supported by a numerical validation of out analytic model against Silvaco ATLAS which solves drift-diffusion equations using a finite elements method. Our goal is to develop a simpler and cheaper, but accurate model to study such devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new method for the evaluation of the efficiency of parabolic trough collectors, called Rapid Test Method, is investigated at the Solar Institut Jülich. The basic concept is to carry out measurements under stagnation conditions. This allows a fast and inexpensive process due to the fact that no working fluid is required. With this approach, the temperature reached by the inner wall of the receiver is assumed to be the stagnation temperature and hence the average temperature inside the collector. This leads to a systematic error which can be rectified through the introduction of a correction factor. A model of the collector is simulated with COMSOL Multipyisics to study the size of the correction factor depending on collector geometry and working conditions. The resulting values are compared with experimental data obtained at a test rig at the Solar Institut Jülich. These results do not match with the simulated ones. Consequentially, it was not pos-sible to verify the model. The reliability of both the model with COMSOL Multiphysics and of the measurements are analysed. The influence of the correction factor on the rapid test method is also studied, as well as the possibility of neglecting it by measuring the receiver’s inner wall temperature where it receives the least amount of solar rays. The last two chapters analyse the specific heat capacity as a function of pressure and tem-perature and present some considerations about the uncertainties on the efficiency curve obtained with the Rapid Test Method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study is divided into two main part: one focused on the GEO Satellite IoT and the other on the LEO Satellite IoT. Concerning the GEO Satellite IoT, the activity has been developed in the context of EUMETSAT Data Collection Service (DCS) by investigating the performance at the receiver within challenging scenarios. DCS are provided by several GEO Satellite operators, giving almost total coverage around the world. In this study firstly an overview of the DCS end-to-end architecture is given followed by a detailed description of both the tools used for the simulations: the DCP-TST (message generator and transmitter) and the DCP-RX (receiver). After generating several test messages, the performances have been evaluated with the addition of impairments (CW and sweeping interferences) and considerations in terms of BER and Good Messages are produced. Furthermore, a study on the PLL System is also conducted together with evaluations on the effectiveness of tuning the PLL Bw on the overall performance. Concerning the LEO Satellite IoT, the activity was carried out in the framework of the ASI Bidirectional IoT Satellite Service (BISS) Project. The elaborate covers a survey about the possible services that the project can accomplish and a technical analysis on the uplink MA. In particular, the LR-FHSS is proved to be a valid alternative for the uplink through an extensive analysis on its Network capacity and through the study of an analytic model for Success Probability with its Matlab implementation.