2 resultados para energy angular districution function
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Since its discovery, top quark has represented one of the most investigated field in particle physics. The aim of this thesis is the reconstruction of hadronic top with high transverse momentum (boosted) with the Template Overlap Method (TOM). Because of the high energy, the decay products of boosted tops are partially or totally overlapped and thus they are contained in a single large radius jet (fat-jet). TOM compares the internal energy distributions of the candidate fat-jet to a sample of tops obtained by a MC simulation (template). The algorithm is based on the definition of an overlap function, which quantifies the level of agreement between the fat-jet and the template, allowing an efficient discrimination of signal from the background contributions. A working point has been decided in order to obtain a signal efficiency close to 90% and a corresponding background rejection at 70%. TOM performances have been tested on MC samples in the muon channel and compared with the previous methods present in literature. All the methods will be merged in a multivariate analysis to give a global top tagging which will be included in ttbar production differential cross section performed on the data acquired in 2012 at sqrt(s)=8 TeV in high phase space region, where new physics processes could be possible. Due to its peculiarity to increase the pT, the Template Overlap Method will play a crucial role in the next data taking at sqrt(s)=13 TeV, where the almost totality of the tops will be produced at high energy, making the standard reconstruction methods inefficient.
Resumo:
The aim of this thesis is to study the angular momentum of a sample of S0 galaxies. In the quest to understand whether the formation of S0 galaxies is more closely linked to that of ellipticals or that of spirals, our goal is to compare the amount of their specific angular momentum as a function of stellar mass with respect to spirals. Through kinematic comparison between these different classes of galaxies we aim to understand if a scenario of passive evolution, in which the galaxy’s gas is consumed and the star formation is quenched, can be considered as plausible mechanism to explain the transformation from spirals to S0s. In order to derive the structural and photometric parameters of galaxy sub-components we performed a bulge-disc decomposition of optical images using GALFIT. The stellar kinematic of the galaxies was measured using integral field spectroscopic data from CALIFA survey. The development of new original software, based on a Monte Carlo Markov Chain algorithm, allowed us to obtain the values of the line of sight velocity and velocity dispersion of disc and bulge components. The result that we obtained is that S0 discs have a distribution of stellar specific angular momentum that is in full agreement with that of spiral discs, so the mechanism of simple fading can be considered as one of the most important for transformation from spirals to S0s.