2 resultados para energetic metal cluster deposition
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of this work is to explore the chemistry of new heteroatomic molecular compounds never reported in the scientific literature so far: Ni-P carbonyl clusters. First, an attempt was made to illustrate the reasons which brought to the choice of this specific metal-pnictogen couple, such as the interesting properties of Ni-P binary phases, the difficulties related in obtaining structural data for this bulk compounds and the absence of references about nickel-phosphorus molecular compounds (e.g. carbonyl clusters) reported in literature. Then, the general criteria chosen for the reactions between precursors [Ni6(CO)12]2- and PCl3 or POCl3 have been reported. This work has permitted to individuate many new products, of which some have also been isolated and characterised: [Ni11P(CO)18]3-, [Ni23-xP2(CO)30-x]6- (x=0, 1), [HNi31P4(CO)39]5- e [H2Ni31P4(CO)39]4-. Except for the former, a reproducible synthetic path has been refined for all those new Ni-P carbonyl clusters; furthermore some chemical reactivity has been carried out in order to test their characteristics.
Resumo:
Feedback from the most massive components of a young stellar cluster deeply affects the surrounding ISM driving an expanding over-pressured hot gas cavity in it. In spiral galaxies these structures may have sufficient energy to break the disk and eject large amount of material into the halo. The cycling of this gas, which eventually will fall back onto the disk, is known as galactic fountains. We aim at better understanding the dynamics of such fountain flow in a Galactic context, frame the problem in a more dynamic environment possibly learning about its connection and regulation to the local driving mechanism and understand its role as a metal diffusion channel. The interaction of the fountain with a hot corona is hereby analyzed, trying to understand the properties and evolution of the extraplanar material. We perform high resolution hydrodynamical simulations with the moving-mesh code AREPO to model the multi-phase ISM of a Milky Way type galaxy. A non-equilibrium chemical network is included to self consistently follow the evolution of the main coolants of the ISM. Spiral arm perturbations in the potential are considered so that large molecular gas structures are able to dynamically form here, self shielded from the interstellar radiation field. We model the effect of SN feedback from a new-born stellar cluster inside such a giant molecular cloud, as the driving force of the fountain. Passive Lagrangian tracer particles are used in conjunction to the SN energy deposition to model and study diffusion of freshly synthesized metals. We find that both interactions with hot coronal gas and local ISM properties and motions are equally important in shaping the fountain. We notice a bimodal morphology where most of the ejected gas is in a cold $10^4$ K clumpy state while the majority of the affected volume is occupied by a hot diffuse medium. While only about 20\% of the produced metals stay local, most of them quickly diffuse through this hot regime to great scales.