3 resultados para drivers scheduling problem

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questa tesi viene trattata la problematica di determinare le migliori K soluzioni per due problemi di ottimizzazione, il Knapsack Problem 0-1 e lo Shortest Path Problem. Tali soluzioni possono essere impiegate all'interno di metodi di column generation per la risoluzione di problemi reali, ad esempio Bin Packing Problems e problemi di scheduling di veicoli ed equipaggi. Sono stati implementati, per verificarne sperimentalmente le prestazioni, nuovi algoritmi di programmazione dinamica, sviluppati nell’ambito di un programma di ricerca. Inizialmente, per entrambi i problemi, è stato descritto un algoritmo che determinasse le migliori K soluzioni per ogni possibile sottoproblema; partendo da uno zaino con capacità nulla, nel caso del Knapsack Problem 0-1, e dalla determinazione di un cammino dal vertice sorgente in se stesso per lo Shortest Path Problem, l’algoritmo determina le migliori soluzioni di sottoproblemi via via sempre più grandi, utilizzando le soluzioni costruite per gli stati precedenti, fino a ottenere le migliori soluzioni del problema globale. Successivamente, è stato definito un algoritmo basato su un approccio di ricorsione backward; in questo caso si utilizza una funzione ricorsiva che, chiamata a partire dallo stato corrispondente al problema globale, viene richiamata solo sugli stati intermedi strettamente necessari, e per ognuno di essi non vengono determinate soluzioni superflue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a joint location-inventory model is proposed that simultaneously optimises strategic supply chain design decisions such as facility location and customer allocation to facilities, and tactical-operational inventory management and production scheduling decisions. All this is analysed in a context of demand uncertainty and supply uncertainty. While demand uncertainty stems from potential fluctuations in customer demands over time, supply-side uncertainty is associated with the risk of “disruption” to which facilities may be subject. The latter is caused by external factors such as natural disasters, strikes, changes of ownership and information technology security incidents. The proposed model is formulated as a non-linear mixed integer programming problem to minimise the expected total cost, which includes four basic cost items: the fixed cost of locating facilities at candidate sites, the cost of transport from facilities to customers, the cost of working inventory, and the cost of safety stock. Next, since the optimisation problem is very complex and the number of evaluable instances is very low, a "matheuristic" solution is presented. This approach has a twofold objective: on the one hand, it considers a larger number of facilities and customers within the network in order to reproduce a supply chain configuration that more closely reflects a real-world context; on the other hand, it serves to generate a starting solution and perform a series of iterations to try to improve it. Thanks to this algorithm, it was possible to obtain a solution characterised by a lower total system cost than that observed for the initial solution. The study concludes with some reflections and the description of possible future insights.