11 resultados para district heat energy production
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In recent years, developed countries have turned their attention to clean and renewable energy, such as wind energy and wave energy that can be converted to electrical power. Companies and academic groups worldwide are investigating several wave energy ideas today. Accordingly, this thesis studies the numerical simulation of the dynamic response of the wave energy converters (WECs) subjected to the ocean waves. This study considers a two-body point absorber (2BPA) and an oscillating surge wave energy converter (OSWEC). The first aim is to mesh the bodies of the earlier mentioned WECs to calculate their hydrostatic properties using axiMesh.m and Mesh.m functions provided by NEMOH. The second aim is to calculate the first-order hydrodynamic coefficients of the WECs using the NEMOH BEM solver and to study the ability of this method to eliminate irregular frequencies. The third is to generate a *.h5 file for 2BPA and OSWEC devices, in which all the hydrodynamic data are included. The BEMIO, a pre-and post-processing tool developed by WEC-Sim, is used in this study to create *.h5 files. The primary and final goal is to run the wave energy converter Simulator (WEC-Sim) to simulate the dynamic responses of WECs studied in this thesis and estimate their power performance at different sites located in the Mediterranean Sea and the North Sea. The hydrodynamic data obtained by the NEMOH BEM solver for the 2BPA and OSWEC devices studied in this thesis is imported to WEC-Sim using BEMIO. Lastly, the power matrices and annual energy production (AEP) of WECs are estimated for different sites located in the Sea of Sicily, Sea of Sardinia, Adriatic Sea, Tyrrhenian Sea, and the North Sea. To this end, the NEMOH and WEC-Sim are still the most practical tools to estimate the power generation of WECs numerically.
Resumo:
In the framework of the energy transition, the acquisition of proper knowledge of fundamental aspects characterizing the use of alternative fuels is paramount as well as the development of optimized know-how and technologies. In this sense, the use of hydrogen has been indicated as a promising route for decarbonization at the end-users stage in the energy supply chain. However, the elevated reactivity and the low-density at atmospheric conditions of hydrogen pose new challenges. Among the others, the dilution of hydrogen with carbon dioxide from carbon capture and storage systems represents a possible route. However, the interactions between these species have been poorly studied so far. For these reasons, this thesis, in collaboration between the University of Bologna and Technische Universität Bergakademie of Freiberg in Saxony (Germany), investigates the laminar flame of hydrogen-based premixed gas with the dilution of carbon dioxide. An experimental system, called a heat flux burner, was adopted ad different operating conditions. The presence of the cellularity phenomenon, forming the so-called cellular flame, was observed and analysed. Theoretical and visual methods have allowed for the characterization of the investigated flames, opening new alternatives for sustainable energy production via hydrogen transformation.
Resumo:
Nowadays offshore wind turbines represents a valid answer for energy production but with an increasing in costs mainly due to foundation technology required. Hybrid foundations composed by suction caissons over which is welded a tower supporting the nacelle and the blades allows a strong costs reduction. Here a monopod configuration is studied in a sandy soil in a 10 m water depth. Bearing capacity, sliding resistance and pull-out resistance are evaluated. In a second part the installation process occurring in four steps is analysed. considering also the effect of stress enhancement due to frictional forces opposing to penetration growing at skirt sides both inside and outside. In a three dimensional finite element model using Straus7 the soil non-linearity is considered in an approximate way through an iterative procedure using the Yokota empirical decay curves.
Resumo:
The demand for novel renewable energy sources, together with the new findings on bacterial electron transport mechanisms and the progress in microbial fuel cell design, have raised a noticeable interest in microbial power generation. Microbial fuel cell (MFC) is an electrochemical device that converts organic substrates into electricity via catalytic conversion by microorganism. It has represented a continuously growing research field during the past few years. The great advantage of this device is the direct conversion of the substrate into electricity and in the future, MFC may be linked to municipal waste streams or sources of agricultural and animal waste, providing a sustainable system for waste treatment and energy production. However, these novel green technologies have not yet been used for practical applications due to their low power outputs and challenges associated with scale-up, so in-depth studies are highly necessary to significantly improve and optimize the device working conditions. For the time being, the micro-scale MFCs show great potential in the rapid screening of electrochemically active microbes. This thesis presents how it will be possible to optimize the properties and design of the micro-size microbial fuel cell for maximum efficiency by understanding the MFC system. So it will involve designing, building and testing a miniature microbial fuel cell using a new species of microorganisms that promises high efficiency and long lifetime. The new device offer unique advantages of fast start-up, high sensitivity and superior microfluidic control over the measured microenvironment, which makes them good candidates for rapid screening of electrode materials, bacterial strains and growth media. It will be made in the Centre of Hybrid Biodevices (Faculty of Physical Sciences and Engineering, University of Southampton) from polymer materials like PDMS. The eventual aim is to develop a system with the optimum combination of microorganism, ion exchange membrane and growth medium. After fabricating the cell, different bacteria and plankton species will be grown in the device and the microbial fuel cell characterized for open circuit voltage and power. It will also use photo-sensitive organisms and characterize the power produced by the device in response to optical illumination.
Resumo:
This dissertation document deals with the development of a project, over a span of more than two years, carried out within the scope of the Arrowhead Framework and which bears my personal contribution in several sections. The final part of the project took place during a visiting period at the university of Luleå. The Arrowhead Project is an European project, belonging to the ARTEMIS association, which aims to foster new technologies and unify the access to them into an unique framework. Such technologies include the Internet of Things phe- nomenon, Smart Houses, Electrical Mobility and renewable energy production. An application is considered compliant with such framework when it respects the Service Oriented Architecture paradigm and it is able to interact with a set of defined components called Arrowhead Core Services. My personal contribution to this project is given by the development of several user-friendly API, published in the project's main repository, and the integration of a legacy system within the Arrowhead Framework. The implementation of this legacy system was initiated by me in 2012 and, after many improvements carried out by several developers in UniBO, it has been again significantly modified this year in order to achieve compatibility. The system consists of a simulation of an urban scenario where a certain amount of electrical vehicles are traveling along their specified routes. The vehicles are con-suming their battery and, thus, need to recharge at the charging stations. The electrical vehicles need to use a reservation mechanism to be able to recharge and avoid waiting lines, due to the long recharge process. The integration with the above mentioned framework consists in the publication of the services that the system provides to the end users through the instantiation of several Arrowhead Service Producers, together with a demo Arrowhead- compliant client application able to consume such services.
Resumo:
Oggetto di questa tesi è lo studio di una rete di teleriscaldamento (TLR) preesistente, la rete di Corticella (Bo) ipotizzando la presenza di sottostazioni di scambio termico attive. Inizialmente sono state presentate le sottostazioni di scambio termico sia tradizionali che attive. Nelle tradizionali ci si è soffermato sul tipo di regolazione che può avvenire. Per quanto riguarda le sottostazioni di scambio termico attive son stati esaminati i 4 layout che permettono uno scambio termico bidirezionale di energia termica. E’ stato presentato il software IHENA (intelligent Heat Energy Network Analysis) creato dal dipartimento di ingegneria industriale, che ha permesso di effettuare le simulazioni sulla rete analizzata. Viene mostrato l’algoritmo di Todini-Pilati generalizzato dall’utilizzo delle equazioni di Darcy-Weisbach su cui si basa il motore di calcolo. Inoltre vengono presentati i vari input che è necessario inserire per ottenere il calcolo della rete. Dopo nozioni di base relative al teleriscaldamento attivo e la presentazione del software utilizzato si è passati alla vera e propria analisi della rete di teleriscaldamento. Sono state effettuate varie simulazioni per vedere l’andamento della rete di Corticella sia considerandola passiva (come nella realtà) che ipotizzandola attiva tramite l’inserimento di sottostazioni di scambio termico ative. Le analisi condotte riguardano i seguenti punti. a) E’ stata presentata la rete di Corticella cosi come è andando a studiare quindi il caso base. b) Sono state svolte delle analisi per vedere come si comportava la rete nel caso in cui venivano variati dei parametri operativi come i carichi termici richiesti dalle utenze. c) Sono stati valutati i percorsi più critici. d) Si è condotta un analisi sulla regolazione al variare delle temperature esterne. Dopo l'analisi del caso base sono state introdotte delle sottostazioni di scambio termico attive, prima solo una, e poi varie lungo determinati percorsi. Le valutazioni effettuate mettevano in primo piano gli andamenti della temperatura nei percorsi, la potenza termica generata dalla sorgente, la temperatura di ritorno in centrale e se si verificano delle problematiche sugli scambiatori di calore. In queste simulazioni sono stati valutati tutti e quattro gli schemi utilizzabili. Infine è stata effettuata un analisi comparativa tra le varie soluzioni studiate per poter mettere a confronto i casi. In particolare anche qui si sono voluti confrontare i valori di potenza spesa per il pompaggio, temperatura di ritorno in centrale e potenza termica offerta dalla sorgente.
Resumo:
The need to use renewable energy sources, due to the massive production of pollution for the energy production, has led to the development of new technologies for the use of solar energy. The purpose of this thesis project is to synthesize and characterize new thiophene-based polymeric materials processable in water, a green solvent, for the construction of organic solar cells, promising and versatile devices used for the production of electric energy. For this, a highly regioregular polymer was synthesized through GRIM polymerization (Grignard Metathesis Polymerization) on which a study was performed to identify the optimal reaction time.
Resumo:
The current environmental and socio-economic situation promotes the development of carbon-neutral and sustainable solutions for energy supply. In this framework, the use of hydrogen has been largely indicated as a promising alternative. However, safety aspects are of concern for storage and transportation technologies. Indeed, the current know-how promotes its transportation via pipeline as compressed gas. However, the peculiar properties of hydrogen make the selection of suitable materials challenging. For these reasons, dilution with less reactive species has been considered a short and medium solution. As a way of example, methane-hydrogen mixtures are currently transported via pipelines. In this case, the hydrogen content is limited to 20% in volume, thus keeping the dependence on natural gas sources. On the contrary, hydrogen can be conveniently transported by mixing it with carbon dioxide deriving from carbon capture and storage technologies. In this sense, the interactions between hydrogen and carbon dioxide have been poorly studied. In particular, the effects of composition and operative conditions in the case of accidental release or for direct use in the energy supply chain are unknown. For these reasons, the present work was devoted to the characterization of the chemical phenomena ruling the system. To this aim, laminar flames containing hydrogen and carbon dioxide in the air were investigated experimentally and numerically. Different detailed kinetic mechanisms largely validated were considered at this stage. Significant discrepancies were observed among numerical and experimental data, especially once a fuel consisting of 40%v of hydrogen was studied. This deviation was attributed to the formation of a cellular flame increasing the overall reactivity. Hence, this observation suggests the need for combined models accounting for peculiar physical phenomena and detailed kinetic mechanisms characterizing the hydrogen-containing flames.
Resumo:
In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.
Resumo:
In the early 1970 the community has started to realize that have as a main principle the industry one, with the oblivion of the people and health conditions and of the world in general, it could not be a guideline principle. The sea, as an energy source, has the characteristic of offering different types of exploitation, in this project the focus is on the wave energy. Over the last 15 years the Countries interested in the renewable energies grew. Therefore many devices have came out, first in the world of research, then in the commercial one; these converters are able to achieve an energy transformation into electrical energy. The purpose of this work is to analyze the efficiency of a new wave energy converter, called WavePiston, with the aim of determine the feasibility of its actual application in different wave conditions: from the energy sea state of the North Sea, to the more quiet of the Mediterranean Sea. The evaluation of the WavePiston is based on the experimental investigation conducted at the University of Aalborg, in Denmark; and on a numerical modelling of the device in question, to ascertain its efficiency regardless the laboratory results. The numerical model is able to predict the laboratory condition, but it is not yet a model which can be used for any installation, in fact no mooring or economical aspect are included yet. È dai primi anni del 1970 che si è iniziato a capire che il solo principio dell’industria con l’incuranza delle condizioni salutari delle persone e del mondo in generale non poteva essere un principio guida. Il mare, come fonte energetica, ha la caratteristica di offrire diverse tipologie di sfruttamento, in questo progetto è stata analizzata l’energia da onda. Negli ultimi 15 anni sono stati sempre più in aumento i Paesi interessati in questo ambito e di conseguenza, si sono affacciati, prima nel mondo della ricerca, poi in quello commerciale, sempre più dispositivi atti a realizzare questa trasformazione energetica. Di tali convertitori di energia ondosa ne esistono diverse classificazioni. Scopo di tale lavoro è analizzare l’efficienza di un nuovo convertitore di energia ondosa, chiamato WavePiston, al fine si stabilire la fattibilità di una sua reale applicazione in diverse condizioni ondose: dalle più energetiche del Mare del Nord, alle più quiete del Mar Mediterraneo. La valutazione sul WavePiston è basata sullo studio sperimentale condotto nell’Università di Aalborg, in Danimarca; e su di una modellazione numerica del dispositivo stesso, al fine di conoscerne l’efficienza a prescindere dalla possibilità di avere risultati di laboratorio. Il modello numerico è in grado di predirre le condizioni di laboratorio, ma non considera ancora elementi come gli ancoraggi o valutazione dei costi.
Resumo:
The first part of this essay aims at investigating the already available and promising technologies for the biogas and bio-hydrogen production from anaerobic digestion of different organic substrates. One strives to show all the peculiarities of this complicate process, such as continuity, number of stages, moisture, biomass preservation and rate of feeding. The main outcome of this part is the awareness of the huge amount of reactor configurations, each of which suitable for a few types of substrate and circumstance. Among the most remarkable results, one may consider first of all the wet continuous stirred tank reactors (CSTR), right to face the high waste production rate in urbanised and industrialised areas. Then, there is the up-flow anaerobic sludge blanket reactor (UASB), aimed at the biomass preservation in case of highly heterogeneous feedstock, which can also be treated in a wise co-digestion scheme. On the other hand, smaller and scattered rural realities can be served by either wet low-rate digesters for homogeneous agricultural by-products (e.g. fixed-dome) or the cheap dry batch reactors for lignocellulose waste and energy crops (e.g. hybrid batch-UASB). The biological and technical aspects raised during the first chapters are later supported with bibliographic research on the important and multifarious large-scale applications the products of the anaerobic digestion may have. After the upgrading techniques, particular care was devoted to their importance as biofuels, highlighting a further and more flexible solution consisting in the reforming to syngas. Then, one shows the electricity generation and the associated heat conversion, stressing on the high potential of fuel cells (FC) as electricity converters. Last but not least, both the use as vehicle fuel and the injection into the gas pipes are considered as promising applications. The consideration of the still important issues of the bio-hydrogen management (e.g. storage and delivery) may lead to the conclusion that it would be far more challenging to implement than bio-methane, which can potentially “inherit” the assets of the similar fossil natural gas. Thanks to the gathered knowledge, one devotes a chapter to the energetic and financial study of a hybrid power system supplied by biogas and made of different pieces of equipment (natural gas thermocatalitic unit, molten carbonate fuel cell and combined-cycle gas turbine structure). A parallel analysis on a bio-methane-fed CCGT system is carried out in order to compare the two solutions. Both studies show that the apparent inconvenience of the hybrid system actually emphasises the importance of extending the computations to a broader reality, i.e. the upstream processes for the biofuel production and the environmental/social drawbacks due to fossil-derived emissions. Thanks to this “boundary widening”, one can realise the hidden benefits of the hybrid over the CCGT system.