12 resultados para distributed application

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’obiettivo del progetto di tesi svolto è quello di realizzare un servizio di livello middleware dedicato ai dispositivi mobili che sia in grado di fornire il supporto per l’offloading di codice verso una infrastruttura cloud. In particolare il progetto si concentra sulla migrazione di codice verso macchine virtuali dedicate al singolo utente. Il sistema operativo delle VMs è lo stesso utilizzato dal device mobile. Come i precedenti lavori sul computation offloading, il progetto di tesi deve garantire migliori performance in termini di tempo di esecuzione e utilizzo della batteria del dispositivo. In particolare l’obiettivo più ampio è quello di adattare il principio di computation offloading a un contesto di sistemi distribuiti mobili, migliorando non solo le performance del singolo device, ma l’esecuzione stessa dell’applicazione distribuita. Questo viene fatto tramite una gestione dinamica delle decisioni di offloading basata, non solo, sullo stato del device, ma anche sulla volontà e/o sullo stato degli altri utenti appartenenti allo stesso gruppo. Per esempio, un primo utente potrebbe influenzare le decisioni degli altri membri del gruppo specificando una determinata richiesta, come alta qualità delle informazioni, risposta rapida o basata su altre informazioni di alto livello. Il sistema fornisce ai programmatori un semplice strumento di definizione per poter creare nuove policy personalizzate e, quindi, specificare nuove regole di offloading. Per rendere il progetto accessibile ad un più ampio numero di sviluppatori gli strumenti forniti sono semplici e non richiedono specifiche conoscenze sulla tecnologia. Il sistema è stato poi testato per verificare le sue performance in termini di mecchanismi di offloading semplici. Successivamente, esso è stato anche sottoposto a dei test per verificare che la selezione di differenti policy, definite dal programmatore, portasse realmente a una ottimizzazione del parametro designato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questa dissertazione esamina le sfide e i limiti che gli algoritmi di analisi di grafi incontrano in architetture distribuite costituite da personal computer. In particolare, analizza il comportamento dell'algoritmo del PageRank così come implementato in una popolare libreria C++ di analisi di grafi distribuiti, la Parallel Boost Graph Library (Parallel BGL). I risultati qui presentati mostrano che il modello di programmazione parallela Bulk Synchronous Parallel è inadatto all'implementazione efficiente del PageRank su cluster costituiti da personal computer. L'implementazione analizzata ha infatti evidenziato una scalabilità negativa, il tempo di esecuzione dell'algoritmo aumenta linearmente in funzione del numero di processori. Questi risultati sono stati ottenuti lanciando l'algoritmo del PageRank della Parallel BGL su un cluster di 43 PC dual-core con 2GB di RAM l'uno, usando diversi grafi scelti in modo da facilitare l'identificazione delle variabili che influenzano la scalabilità. Grafi rappresentanti modelli diversi hanno dato risultati differenti, mostrando che c'è una relazione tra il coefficiente di clustering e l'inclinazione della retta che rappresenta il tempo in funzione del numero di processori. Ad esempio, i grafi Erdős–Rényi, aventi un basso coefficiente di clustering, hanno rappresentato il caso peggiore nei test del PageRank, mentre i grafi Small-World, aventi un alto coefficiente di clustering, hanno rappresentato il caso migliore. Anche le dimensioni del grafo hanno mostrato un'influenza sul tempo di esecuzione particolarmente interessante. Infatti, si è mostrato che la relazione tra il numero di nodi e il numero di archi determina il tempo totale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nella fisica delle particelle, onde poter effettuare analisi dati, è necessario disporre di una grande capacità di calcolo e di storage. LHC Computing Grid è una infrastruttura di calcolo su scala globale e al tempo stesso un insieme di servizi, sviluppati da una grande comunità di fisici e informatici, distribuita in centri di calcolo sparsi in tutto il mondo. Questa infrastruttura ha dimostrato il suo valore per quanto riguarda l'analisi dei dati raccolti durante il Run-1 di LHC, svolgendo un ruolo fondamentale nella scoperta del bosone di Higgs. Oggi il Cloud computing sta emergendo come un nuovo paradigma di calcolo per accedere a grandi quantità di risorse condivise da numerose comunità scientifiche. Date le specifiche tecniche necessarie per il Run-2 (e successivi) di LHC, la comunità scientifica è interessata a contribuire allo sviluppo di tecnologie Cloud e verificare se queste possano fornire un approccio complementare, oppure anche costituire una valida alternativa, alle soluzioni tecnologiche esistenti. Lo scopo di questa tesi è di testare un'infrastruttura Cloud e confrontare le sue prestazioni alla LHC Computing Grid. Il Capitolo 1 contiene un resoconto generale del Modello Standard. Nel Capitolo 2 si descrive l'acceleratore LHC e gli esperimenti che operano a tale acceleratore, con particolare attenzione all’esperimento CMS. Nel Capitolo 3 viene trattato il Computing nella fisica delle alte energie e vengono esaminati i paradigmi Grid e Cloud. Il Capitolo 4, ultimo del presente elaborato, riporta i risultati del mio lavoro inerente l'analisi comparata delle prestazioni di Grid e Cloud.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'obiettivo di questa tesi è studiare la fattibilità dello studio della produzione associata ttH del bosone di Higgs con due quark top nell'esperimento CMS, e valutare le funzionalità e le caratteristiche della prossima generazione di toolkit per l'analisi distribuita a CMS (CRAB versione 3) per effettuare tale analisi. Nel settore della fisica del quark top, la produzione ttH è particolarmente interessante, soprattutto perchè rappresenta l'unica opportunità di studiare direttamente il vertice t-H senza dover fare assunzioni riguardanti possibili contributi dalla fisica oltre il Modello Standard. La preparazione per questa analisi è cruciale in questo momento, prima dell'inizio del Run-2 dell'LHC nel 2015. Per essere preparati a tale studio, le implicazioni tecniche di effettuare un'analisi completa in un ambito di calcolo distribuito come la Grid non dovrebbero essere sottovalutate. Per questo motivo, vengono presentati e discussi un'analisi dello stesso strumento CRAB3 (disponibile adesso in versione di pre-produzione) e un confronto diretto di prestazioni con CRAB2. Saranno raccolti e documentati inoltre suggerimenti e consigli per un team di analisi che sarà eventualmente coinvolto in questo studio. Nel Capitolo 1 è introdotta la fisica delle alte energie a LHC nell'esperimento CMS. Il Capitolo 2 discute il modello di calcolo di CMS e il sistema di analisi distribuita della Grid. Nel Capitolo 3 viene brevemente presentata la fisica del quark top e del bosone di Higgs. Il Capitolo 4 è dedicato alla preparazione dell'analisi dal punto di vista degli strumenti della Grid (CRAB3 vs CRAB2). Nel capitolo 5 è presentato e discusso uno studio di fattibilità per un'analisi del canale ttH in termini di efficienza di selezione.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il lavoro svolto è dedicato alla realizzazione ed implementazione di un sistema distribuito "smart" per il controllo degli accessi. Il progetto sviluppato è inquadrato nel contesto di "SPOT Software", che necessita di migliorare il processo aziendale di controllo accessi e gestione presenze al fine di aumentarne usabilità ed efficienza. Saranno affrontate in generale le tematiche di Internet of Things, Smart Building, Smart City e sistemi embedded, approfondendo il ruolo delle tecnologie di comunicazione NFC e BLE, al centro di questo lavoro. Successivamente sarà discussa la progettazione di ognuno dei tre nodi del sistema, motivando le scelte tecnologiche e progettuali: Web application, Smart device e Smartphone app.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La programmazione aggregata è un paradigma che supporta la programmazione di sistemi di dispositivi, adattativi ed eventualmente a larga scala, nel loro insieme -- come aggregati. L'approccio prevalente in questo contesto è basato sul field calculus, un calcolo formale che consente di definire programmi aggregati attraverso la composizione funzionale di campi computazionali, creando i presupposti per la specifica di pattern di auto-organizzazione robusti. La programmazione aggregata è attualmente supportata, in modo più o meno parziale e principalmente per la simulazione, da DSL dedicati (cf., Protelis), ma non esistono framework per linguaggi mainstream finalizzati allo sviluppo di applicazioni. Eppure, un simile supporto sarebbe auspicabile per ridurre tempi e sforzi d'adozione e per semplificare l'accesso al paradigma nella costruzione di sistemi reali, nonché per favorire la ricerca stessa nel campo. Il presente lavoro consiste nello sviluppo, a partire da un prototipo della semantica operazionale del field calculus, di un framework per la programmazione aggregata in Scala. La scelta di Scala come linguaggio host nasce da motivi tecnici e pratici. Scala è un linguaggio moderno, interoperabile con Java, che ben integra i paradigmi ad oggetti e funzionale, ha un sistema di tipi espressivo, e fornisce funzionalità avanzate per lo sviluppo di librerie e DSL. Inoltre, la possibilità di appoggiarsi, su Scala, ad un framework ad attori solido come Akka, costituisce un altro fattore trainante, data la necessità di colmare l'abstraction gap inerente allo sviluppo di un middleware distribuito. Nell'elaborato di tesi si presenta un framework che raggiunge il triplice obiettivo: la costruzione di una libreria Scala che realizza la semantica del field calculus in modo corretto e completo, la realizzazione di una piattaforma distribuita Akka-based su cui sviluppare applicazioni, e l'esposizione di un'API generale e flessibile in grado di supportare diversi scenari.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La simulazione è definita come la rappresentazione del comportamento di un sistema o di un processo per mezzo del funzionamento di un altro o, alternativamente, dall'etimologia del verbo “simulare”, come la riproduzione di qualcosa di fittizio, irreale, come se in realtà, lo fosse. La simulazione ci permette di modellare la realtà ed esplorare soluzioni differenti e valutare sistemi che non possono essere realizzati per varie ragioni e, inoltre, effettuare differenti valutazioni, dinamiche per quanto concerne la variabilità delle condizioni. I modelli di simulazione possono raggiungere un grado di espressività estremamente elevato, difficilmente un solo calcolatore potrà soddisfare in tempi accettabili i risultati attesi. Una possibile soluzione, viste le tendenze tecnologiche dei nostri giorni, è incrementare la capacità computazionale tramite un’architettura distribuita (sfruttando, ad esempio, le possibilità offerte dal cloud computing). Questa tesi si concentrerà su questo ambito, correlandolo ad un altro argomento che sta guadagnando, giorno dopo giorno, sempre più rilevanza: l’anonimato online. I recenti fatti di cronaca hanno dimostrato quanto una rete pubblica, intrinsecamente insicura come l’attuale Internet, non sia adatta a mantenere il rispetto di confidenzialità, integrità ed, in alcuni, disponibilità degli asset da noi utilizzati: nell’ambito della distribuzione di risorse computazionali interagenti tra loro, non possiamo ignorare i concreti e molteplici rischi; in alcuni sensibili contesti di simulazione (e.g., simulazione militare, ricerca scientifica, etc.) non possiamo permetterci la diffusione non controllata dei nostri dati o, ancor peggio, la possibilità di subire un attacco alla disponibilità delle risorse coinvolte. Essere anonimi implica un aspetto estremamente rilevante: essere meno attaccabili, in quanto non identificabili.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al giorno d'oggi il reinforcement learning ha dimostrato di essere davvero molto efficace nel machine learning in svariati campi, come ad esempio i giochi, il riconoscimento vocale e molti altri. Perciò, abbiamo deciso di applicare il reinforcement learning ai problemi di allocazione, in quanto sono un campo di ricerca non ancora studiato con questa tecnica e perchè questi problemi racchiudono nella loro formulazione un vasto insieme di sotto-problemi con simili caratteristiche, per cui una soluzione per uno di essi si estende ad ognuno di questi sotto-problemi. In questo progetto abbiamo realizzato un applicativo chiamato Service Broker, il quale, attraverso il reinforcement learning, apprende come distribuire l'esecuzione di tasks su dei lavoratori asincroni e distribuiti. L'analogia è quella di un cloud data center, il quale possiede delle risorse interne - possibilmente distribuite nella server farm -, riceve dei tasks dai suoi clienti e li esegue su queste risorse. L'obiettivo dell'applicativo, e quindi del data center, è quello di allocare questi tasks in maniera da minimizzare il costo di esecuzione. Inoltre, al fine di testare gli agenti del reinforcement learning sviluppati è stato creato un environment, un simulatore, che permettesse di concentrarsi nello sviluppo dei componenti necessari agli agenti, invece che doversi anche occupare di eventuali aspetti implementativi necessari in un vero data center, come ad esempio la comunicazione con i vari nodi e i tempi di latenza di quest'ultima. I risultati ottenuti hanno dunque confermato la teoria studiata, riuscendo a ottenere prestazioni migliori di alcuni dei metodi classici per il task allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of my thesis work is to exploit the Google native and open-source platform Kubeflow, specifically using Kubeflow pipelines, to execute a Federated Learning scalable ML process in a 5G-like and simplified test architecture hosting a Kubernetes cluster and apply the largely adopted FedAVG algorithm and FedProx its optimization empowered by the ML platform ‘s abilities to ease the development and production cycle of this specific FL process. FL algorithms are more are and more promising and adopted both in Cloud application development and 5G communication enhancement through data coming from the monitoring of the underlying telco infrastructure and execution of training and data aggregation at edge nodes to optimize the global model of the algorithm ( that could be used for example for resource provisioning to reach an agreed QoS for the underlying network slice) and after a study and a research over the available papers and scientific articles related to FL with the help of the CTTC that suggests me to study and use Kubeflow to bear the algorithm we found out that this approach for the whole FL cycle deployment was not documented and may be interesting to investigate more in depth. This study may lead to prove the efficiency of the Kubeflow platform itself for this need of development of new FL algorithms that will support new Applications and especially test the FedAVG algorithm performances in a simulated client to cloud communication using a MNIST dataset for FL as benchmark.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the optimal operation of a neighborhood of smart households in terms of minimizing the total energy cost is analyzed. Each household may comprise several assets such as electric vehicles, controllable appliances, energy storage and distributed generation. Bi-directional power flow is considered for each household . Apart from the distributed generation unit, technological options such as vehicle-to-home and vehicle-to-grid are available to provide energy to cover self-consumption needs and to export excessive energy to other households, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idea of Grid Computing originated in the nineties and found its concrete applications in contexts like the SETI@home project where a lot of computers (offered by volunteers) cooperated, performing distributed computations, inside the Grid environment analyzing radio signals trying to find extraterrestrial life. The Grid was composed of traditional personal computers but, with the emergence of the first mobile devices like Personal Digital Assistants (PDAs), researchers started theorizing the inclusion of mobile devices into Grid Computing; although impressive theoretical work was done, the idea was discarded due to the limitations (mainly technological) of mobile devices available at the time. Decades have passed, and now mobile devices are extremely more performant and numerous than before, leaving a great amount of resources available on mobile devices, such as smartphones and tablets, untapped. Here we propose a solution for performing distributed computations over a Grid Computing environment that utilizes both desktop and mobile devices, exploiting the resources from day-to-day mobile users that alternatively would end up unused. The work starts with an introduction on what Grid Computing is, the evolution of mobile devices, the idea of integrating such devices into the Grid and how to convince device owners to participate in the Grid. Then, the tone becomes more technical, starting with an explanation on how Grid Computing actually works, followed by the technical challenges of integrating mobile devices into the Grid. Next, the model, which constitutes the solution offered by this study, is explained, followed by a chapter regarding the realization of a prototype that proves the feasibility of distributed computations over a Grid composed by both mobile and desktop devices. To conclude future developments and ideas to improve this project are presented.