2 resultados para disc microstructure
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Fatigue life in metals is predicted utilizing regression analysis of large sets of experimental data, thus representing the material’s macroscopic response. Furthermore, a high variability in the short crack growth (SCG) rate has been observed in polycrystalline materials, in which the evolution and distributionof local plasticity is strongly influenced by the microstructure features. The present work serves to (a) identify the relationship between the crack driving force based on the local microstructure in the proximity of the crack-tip and (b) defines the correlation between scatter observed in the SCG rates to variability in the microstructure. A crystal plasticity model based on the fast Fourier transform formulation of the elasto-viscoplastic problem (CP-EVP-FFT) is used, since the ability to account for the both elastic and plastic regime is critical in fatigue. Fatigue is governed by slip irreversibility, resulting in crack growth, which starts to occur during local elasto-plastic transition. To investigate the effects of microstructure variability on the SCG rate, sets of different microstructure realizations are constructed, in which cracks of different length are introduced to mimic quasi-static SCG in engineering alloys. From these results, the behavior of the characteristic variables of different length scale are analyzed: (i) Von Mises stress fields (ii) resolved shear stress/strain in the pertinent slip systems, and (iii) slip accumulation/irreversibilities. Through fatigue indicator parameters (FIP), scatter within the SCG rates is related to variability in the microstructural features; the results demonstrate that this relationship between microstructure variability and uncertainty in fatigue behavior is critical for accurate fatigue life prediction.
Resumo:
The primary goal of this thesis is to verify the rupture disc sizing of the acrylic reactor. Primarily the test to check the sizing was divided into several stages. It went on to examine ideas to explain the concern and ethical ways, as well as remedies and suggestions to solve the issues and difficulties that were discovered. This thesis will highlight the gathering and arranging of reaction data (recipe composition, enthalpies, reaction temperature, and catalyst feeding times) of the products to be chosen, in accordance with pre-established criteria. To collaborate with the research and development team in the lab to carry out calorimetric testing for the important recipes that have been identified. The verification of the currently installed Rupture Discs in the plant based on the calorimetric test findings is the final stage. This thesis used two separate calorimetry techniques: Phi-TEC II adiabatic calorimetry and differential scanning calorimetry (DSC). The target of the experiment is to check and confirm the correct size of the reactor rupture disc. Arkema (Boretto/Coatex) plant (Emilia romagna) provided a recipe and a scenario following multiple meetings and discussions. The purpose of this technical paper is to describe the outcomes of adiabatic calorimetry performed at the lab scale so that the computation of the vents for a particular recipe and scenario can be verified.