3 resultados para diode dosimetry

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La realizzazione di stati non classici del campo elettromagnetico e in sistemi di spin è uno stimolo alla ricerca, teorica e sperimentale, da almeno trent'anni. Lo studio di atomi freddi in trappole di dipolo permette di avvicinare questo obbiettivo oltre a offrire la possibilità di effettuare esperimenti su condesati di Bose Einstein di interesse nel campo dell'interferometria atomica. La protezione della coerenza di un sistema macroscopico di spin tramite sistemi di feedback è a sua volta un obbiettivo che potrebbe portare a grandi sviluppi nel campo della metrologia e dell'informazione quantistica. Viene fornita un'introduzione a due tipologie di misura non considerate nei programmi standard di livello universitario: la misura non distruttiva (Quantum Non Demolition-QND) e la misura debole. Entrambe sono sfruttate nell'ambito dell'interazione radiazione materia a pochi fotoni o a pochi atomi (cavity QED e Atom boxes). Una trattazione delle trappole di dipolo per atomi neutri e ai comuni metodi di raffreddamento è necessaria all'introduzione all'esperimento BIARO (acronimo francese Bose Einstein condensate for Atomic Interferometry in a high finesse Optical Resonator), che si occupa di metrologia tramite l'utilizzo di condensati di Bose Einstein e di sistemi di feedback. Viene descritta la progettazione, realizzazione e caratterizzazione di un servo controller per la stabilizzazione della potenza ottica di un laser. Il dispositivo è necessario per la compensazione del ligh shift differenziale indotto da un fascio laser a 1550nm utilizzato per creare una trappola di dipolo su atomi di rubidio. La compensazione gioca un ruolo essenziale nel miglioramento di misure QND necessarie, in uno schema di feedback, per mantenere la coerenza in sistemi collettivi di spin, recentemente realizzato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional inorganic materials for x-ray radiation sensors suffer from several drawbacks, including their inability to cover large curved areas, me- chanical sti ffness, lack of tissue-equivalence and toxicity. Semiconducting organic polymers represent an alternative and have been employed as di- rect photoconversion material in organic diodes. In contrast to inorganic detector materials, polymers allow low-cost and large area fabrication by sol- vent based methods. In addition their processing is compliant with fexible low-temperature substrates. Flexible and large-area detectors are needed for dosimetry in medical radiotherapy and security applications. The objective of my thesis is to achieve optimized organic polymer diodes for fexible, di- rect x-ray detectors. To this end polymer diodes based on two different semi- conducting polymers, polyvinylcarbazole (PVK) and poly(9,9-dioctyluorene) (PFO) have been fabricated. The diodes show state-of-the-art rectifying be- haviour and hole transport mobilities comparable to reference materials. In order to improve the X-ray stopping power, high-Z nanoparticle Bi2O3 or WO3 where added to realize a polymer-nanoparticle composite with opti- mized properities. X-ray detector characterization resulted in sensitivties of up to 14 uC/Gy/cm2 for PVK when diodes were operated in reverse. Addition of nanoparticles could further improve the performance and a maximum sensitivy of 19 uC/Gy/cm2 was obtained for the PFO diodes. Compared to the pure PFO diode this corresponds to a five-fold increase and thus highlights the potentiality of nanoparticles for polymer detector design. In- terestingly the pure polymer diodes showed an order of magnitude increase in sensitivity when operated in forward regime. The increase was attributed to a different detection mechanism based on the modulation of the diodes conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente lavoro di tesi nasce in seguito all’esperienza di tirocinio svolta presso l’Arcispedale Santa Maria Nuova di Reggio Emilia. Fulcro di questo lavoro è lo sviluppo di un sistema di pianificazione della dose per il trattamento dei pazienti sottoposti a Molecular Radionuclide Therapy (MRT). Presso tale struttura ospedaliera è già stato sviluppato uno strumento che si appoggia all’ambiente di lavoro Matlab per il calcolo dosimetrico. Tale programma è chiamato VoxelMed. Si tratta di uno strumento di calcolo che lavora al così detto voxel-level, tecnica di sviluppo recente che permette il calcolo della dose assorbita all’interno di un paziente in modo più dettagliato rispetto ai metodi di calcolo basati unicamente sulla stima media per organo, tipicamente impiegati in dosimetria tradizionale. Parte del lavoro di tesi consiste nell’implementare nuove modalità di calcolo ed aggiungere ulteriori accorgimenti all’attuale versione di VoxelMed. In VoxelMed è stata poi integrata ex-novo una componente di calcolo di misure radiobiologiche, in particolare della BED. La dose assorbita non è infatti un parametro sufficiente per valutare gli effetti della radiazione sui tessuti, a parità di tipo ed energia della radiazione gli effetti possono essere molto variabili. La BED è il parametro che tiene conto della risposta del tessuto sano o cancerogeno alla radiazione. Parte del lavoro è stato svolto sperimentalmente, tramite misure con fantocci acquisiti o preparati ad hoc. In particolare si sono utilizzati diverse tipologie di fantocci, per effettuare protocolli di calibrazione dei sistemi di acquisizione, misure di curve di effetto di volume parziale e test finali di verifica. Per un ulteriore verifica delle prestazioni di calcolo si sono effettuate misurazioni su un gruppo di pazienti e si sono confrontati i risultati con quelli ottenuti dal software maggiormente utilizzato nella pratica clinica, OLINDA/EXM.