5 resultados para digital modelling technologies
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Currently making digital 3D models and replicas of the cultural heritage assets play an important role in the preservation and having a high detail source for future research and intervention. In this dissertation, it is tried to assess different methods for digital surveying and making 3D replicas of cultural heritage assets in different scales of size. The methodologies vary in devices, software, workflow, and the amount of skill that is required. The three phases of the 3D modelling process are data acquisition, modelling, and model presentation. Each of these sections is divided into sub-sections and there are several approaches, methods, devices, and software that may be employed, furthermore, the selection process should be based on the operation's goal, available facilities, the scale and properties of the object or structure to be modeled, as well as the operators' expertise and experience. The most key point to remember is that the 3D modelling operation should be properly accurate, precise, and reliable; therefore, there are so many instructions and pieces of advice on how to perform 3D modelling effectively. It is an attempt to compare and evaluate the various ways of each phase in order to explain and demonstrate their differences, benefits, and drawbacks in order to serve as a simple guide for new and/or inexperienced users.
Resumo:
In the present work, the deviations in the solubility of CO2, CH4, and N2 at 30 °c in the mixed gases (CO2/CH4) and (CO2/N2) from the pure gas behavior were studied using the dual-mode model over a wide range of equilibrium composition and pressure values in two glassy polymers. The first of which was PI-DAR which is the polyimide formed by the reaction between 4, 6-diaminoresorcinol dihydrochloride (DAR-Cl) and 2, 2’-bis-(3, 4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). The other glassy polymer was TR-DAR which is the corresponding thermally rearranged polymer of PI-DAR. Also, mixed gas sorption experiments for the gas mixture (CO2/CH4) in TR-DAR at 30°c took place in order to assess the degree of accuracy of the dual-mode model in predicting the true mixed gas behavior. The experiments were conducted on a pressure decay apparatus coupled with a gas chromatography column. On the other hand, the solubility of CO2 and CH4 in two rubbery polymers at 30⁰c in the mixed gas (CO2/CH4) was modelled using the Lacombe and Sanchez equation of state at various values of equilibrium composition and pressure. These two rubbery polymers were cross-linked poly (ethylene oxide) (XLPEO) and poly (dimethylsiloxane) (PDMS). Moreover, data about the sorption of CO2 and CH4 in liquid methyl dietahnolamine MDEA that was collected from literature65-67 was used to determine the deviations in the sorption behavior in the mixed gas from that in the pure gases. It was observed that the competition effects between the penetrants were prevailing in the glassy polymers while swelling effects were predominant in the rubbery polymers above a certain value of the fugacity of CO2. Also, it was found that the dual-mode model showed a good prediction of the sorption of CH4 in the mixed gas for small pressure values but in general, it failed to predict the actual sorption of the penetrants in the mixed gas.
Resumo:
The aim of this thesis is to use the developments, advantages and applications of "Building Information Modelling" (BIM) with emphasis on the discipline of structural design for steel building located in Perugia. BIM was mainly considered as a new way of planning, constructing and operating buildings or infrastructures. It has been found to offer greater opportunities for increased efficiency, optimization of resources and generally better management throughout the life cycle of a facility. BIM increases the digitalization of processes and offers integrated and collaborative technologies for design, construction and operation. To understand BIM and its benefits, one must consider all phases of a project. Higher initial design costs often lead to lower construction and operation costs. Creating data-rich digital models helps to better predict and coordinate the construction phases and operation of a building. One of the main limitations identified in the implementation of BIM is the lack of knowledge and qualified professionals. Certain disciplines such as structural and mechanical design depend on whether the main contractor, owner, general contractor or architect need to use or apply BIM to their projects. The existence of a supporting or mandatory BIM guideline may then eventually lead to its adoption. To test the potential of the BIM adoption in the steel design process, some models were developed taking advantage of a largely diffuse authoring software (Autodesk Revit), to produce construction drawings and also material schedule that were needed in order to estimate quantities and features of a real steel building. Once the model has been built the whole process has been analyzed and then compared with the traditional design process of steel structure. Many relevant aspect in term of clearness and also in time spent were shown and lead to final conclusions about the benefits from BIM methodology.
Resumo:
In recent years, energy modernization has focused on smart engineering advancements. This entails designing complicated software and hardware for variable-voltage digital substations. A digital substation consists of electrical and auxiliary devices, control and monitoring devices, computers, and control software. Intelligent measurement systems use digital instrument transformers and IEC 61850-compliant information exchange protocols in digital substations. Digital instrument transformers used for real-time high-voltage measurements should combine advanced digital, measuring, information, and communication technologies. Digital instrument transformers should be cheap, small, light, and fire- and explosion-safe. These smaller and lighter transformers allow long-distance transmission of an optical signal that gauges direct or alternating current. Cost-prohibitive optical converters are a problem. To improve the tool's accuracy, amorphous alloys are used in the magnetic circuits and compensating feedback. Large-scale voltage converters can be made cheaper by using resistive, capacitive, or hybrid voltage dividers. In known electronic voltage transformers, the voltage divider output is generally on the low-voltage side, facilitating power supply organization. Combining current and voltage transformers reduces equipment size, installation, and maintenance costs. These two gadgets cost less together than individually. To increase commercial power metering accuracy, current and voltage converters should be included into digital instrument transformers so that simultaneous analogue-to-digital samples are obtained. Multichannel ADC microcircuits with synchronous conversion start allow natural parallel sample drawing. Digital instrument transformers are created adaptable to substation operating circumstances and environmental variables, especially ambient temperature. An embedded microprocessor auto-diagnoses and auto-calibrates the proposed digital instrument transformer.
Resumo:
Instrument transformers serve an important role in the protection and isolation of AC electrical systems for measurements of different electrical parameters like voltage, current, power factor, frequency, and energy. As suggested by name these transformers are used in connection with suitable measuring instruments like an ammeter, wattmeter, voltmeter, and energy meters. We have seen how higher voltages and currents are transformed into lower magnitudes to provide isolation between power networks, relays, and other instruments. Reducing transient, suppressing electrical noises in sensitive devices, standardization of instruments and relays up to a few volts and current. Transformer performance directly affects the accuracy of power system measurements and the reliability of relay protection. We classified transformers in terms of purpose, insulating medium, Voltage ranges, temperature ranges, humidity or environmental effect, indoor and outdoor use, performance, Features, specification, efficiency, cost analysis, application, benefits, and limitations which enabled us to comprehend their correct use and selection criteria based on our desired requirements. We also discussed modern Low power instrument transformer products that are recently launched or offered by renowned companies like Schneider Electric, Siemens, ABB, ZIV, G&W etc. These new products are innovations and problem solvers in the domain of measurement, protection, digital communication, advance, and commercial energy metering. Since there is always some space for improvements to explore new advantages of Low power instrument transformers in the domain of their wide linearity, high-frequency range, miniaturization, structural and technological modification, integration, smart frequency modeling, and output prediction of low-power voltage transformers.