4 resultados para decentralized and centralized HRM
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nowadays communication is switching from a centralized scenario, where communication media like newspapers, radio, TV programs produce information and people are just consumers, to a completely different decentralized scenario, where everyone is potentially an information producer through the use of social networks, blogs, forums that allow a real-time worldwide information exchange. These new instruments, as a result of their widespread diffusion, have started playing an important socio-economic role. They are the most used communication media and, as a consequence, they constitute the main source of information enterprises, political parties and other organizations can rely on. Analyzing data stored in servers all over the world is feasible by means of Text Mining techniques like Sentiment Analysis, which aims to extract opinions from huge amount of unstructured texts. This could lead to determine, for instance, the user satisfaction degree about products, services, politicians and so on. In this context, this dissertation presents new Document Sentiment Classification methods based on the mathematical theory of Markov Chains. All these approaches bank on a Markov Chain based model, which is language independent and whose killing features are simplicity and generality, which make it interesting with respect to previous sophisticated techniques. Every discussed technique has been tested in both Single-Domain and Cross-Domain Sentiment Classification areas, comparing performance with those of other two previous works. The performed analysis shows that some of the examined algorithms produce results comparable with the best methods in literature, with reference to both single-domain and cross-domain tasks, in $2$-classes (i.e. positive and negative) Document Sentiment Classification. However, there is still room for improvement, because this work also shows the way to walk in order to enhance performance, that is, a good novel feature selection process would be enough to outperform the state of the art. Furthermore, since some of the proposed approaches show promising results in $2$-classes Single-Domain Sentiment Classification, another future work will regard validating these results also in tasks with more than $2$ classes.
Resumo:
Synthetic biology has recently had a great development, many papers have been published and many applications have been presented, spanning from the production of biopharmacheuticals to the synthesis of bioenergetic substrates or industrial catalysts. But, despite these advances, most of the applications are quite simple and don’t fully exploit the potential of this discipline. This limitation in complexity has many causes, like the incomplete characterization of some components, or the intrinsic variability of the biological systems, but one of the most important reasons is the incapability of the cell to sustain the additional metabolic burden introduced by a complex circuit. The objective of the project, of which this work is part, is trying to solve this problem through the engineering of a multicellular behaviour in prokaryotic cells. This system will introduce a cooperative behaviour that will allow to implement complex functionalities, that can’t be obtained with a single cell. In particular the goal is to implement the Leader Election, this procedure has been firstly devised in the field of distributed computing, to identify the process that allow to identify a single process as organizer and coordinator of a series of tasks assigned to the whole population. The election of the Leader greatly simplifies the computation providing a centralized control. Further- more this system may even be useful to evolutionary studies that aims to explain how complex organisms evolved from unicellular systems. The work presented here describes, in particular, the design and the experimental characterization of a component of the circuit that solves the Leader Election problem. This module, composed of an hybrid promoter and a gene, is activated in the non-leader cells after receiving the signal that a leader is present in the colony. The most important element, in this case, is the hybrid promoter, it has been realized in different versions, applying the heuristic rules stated in [22], and their activity has been experimentally tested. The objective of the experimental characterization was to test the response of the genetic circuit to the introduction, in the cellular environment, of particular molecules, inducers, that can be considered inputs of the system. The desired behaviour is similar to the one of a logic AND gate in which the exit, represented by the luminous signal produced by a fluorescent protein, is one only in presence of both inducers. The robustness and the stability of this behaviour have been tested by changing the concentration of the input signals and building dose response curves. From these data it is possible to conclude that the analysed constructs have an AND-like behaviour over a wide range of inducers’ concentrations, even if it is possible to identify many differences in the expression profiles of the different constructs. This variability accounts for the fact that the input and the output signals are continuous, and so their binary representation isn’t able to capture the complexity of the behaviour. The module of the circuit that has been considered in this analysis has a fundamental role in the realization of the intercellular communication system that is necessary for the cooperative behaviour to take place. For this reason, the second phase of the characterization has been focused on the analysis of the signal transmission. In particular, the interaction between this element and the one that is responsible for emitting the chemical signal has been tested. The desired behaviour is still similar to a logic AND, since, even in this case, the exit signal is determined by the hybrid promoter activity. The experimental results have demonstrated that the systems behave correctly, even if there is still a substantial variability between them. The dose response curves highlighted that stricter constrains on the inducers concentrations need to be imposed in order to obtain a clear separation between the two levels of expression. In the conclusive chapter the DNA sequences of the hybrid promoters are analysed, trying to identify the regulatory elements that are most important for the determination of the gene expression. Given the available data it wasn’t possible to draw definitive conclusions. In the end, few considerations on promoter engineering and complex circuits realization are presented. This section aims to briefly recall some of the problems outlined in the introduction and provide a few possible solutions.
Resumo:
Cloud services are becoming ever more important for everyone's life. Cloud storage? Web mails? Yes, we don't need to be working in big IT companies to be surrounded by cloud services. Another thing that's growing in importance, or at least that should be considered ever more important, is the concept of privacy. The more we rely on services of which we know close to nothing about, the more we should be worried about our privacy. In this work, I will analyze a prototype software based on a peer to peer architecture for the offering of cloud services, to see if it's possible to make it completely anonymous, meaning that not only the users using it will be anonymous, but also the Peers composing it will not know the real identity of each others. To make it possible, I will make use of anonymizing networks like Tor. I will start by studying the state of art of Cloud Computing, by looking at some real example, followed by analyzing the architecture of the prototype, trying to expose the differences between its distributed nature and the somehow centralized solutions offered by the famous vendors. After that, I will get as deep as possible into the working principle of the anonymizing networks, because they are not something that can just be 'applied' mindlessly. Some de-anonymizing techniques are very subtle so things must be studied carefully. I will then implement the required changes, and test the new anonymized prototype to see how its performances differ from those of the standard one. The prototype will be run on many machines, orchestrated by a tester script that will automatically start, stop and do all the required API calls. As to where to find all these machines, I will make use of Amazon EC2 cloud services and their on-demand instances.
Resumo:
Le applicazioni che offrono servizi sulla base della posizione degli utenti sono sempre più utilizzate, a partire dal navigatore fino ad arrivare ai sistemi di trasporto intelligenti (ITS) i quali permetteranno ai veicoli di comunicare tra loro. Alcune di questi servizi permettono perfino di ottenere qualche incentivo se l'utente visita o passa per determinate zone. Per esempio un negozio potrebbe offrire dei coupon alle persone che si trovano nei paraggi. Tuttavia, la posizione degli utenti è facilmente falsificabile, ed in quest'ultima tipologia di servizi, essi potrebbero ottenere gli incentivi in modo illecito, raggirando il sistema. Diviene quindi necessario implementare un'architettura in grado di impedire alle persone di falsificare la loro posizione. A tal fine, numerosi lavori sono stati proposti, i quali delegherebbero la realizzazione di "prove di luogo" a dei server centralizzati oppure collocherebbero degli access point in grado di rilasciare prove o certificati a quegli utenti che si trovano vicino. In questo lavoro di tesi abbiamo ideato un'architettura diversa da quelle dei lavori correlati, cercando di utilizzare le funzionalità offerte dalla tecnologia blockchain e dalla memorizzazione distribuita. In questo modo è stato possibile progettare una soluzione che fosse decentralizzata e trasparente, assicurando l'immutabilità dei dati mediante l'utilizzo della blockchain. Inoltre, verrà dettagliato un'idea di caso d'uso da realizzare utilizzando l'architettura da noi proposta, andando ad evidenziare i vantaggi che, potenzialmente, si potrebbero trarre da essa. Infine, abbiamo implementato parte del sistema in questione, misurando i tempi ed i costi richiesti dalle transazioni su alcune delle blockchain disponibili al giorno d'oggi, utilizzando le infrastrutture messe a disposizione da Ethereum, Polygon e Algorand.