2 resultados para data complexity

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a CMOS Amplifier with High Common Mode rejection designed in UMC 130nm technology. The goal is to achieve a high amplification factor for a wide range of biological signals (with frequencies in the range of 10Hz-1KHz) and to reject the common-mode noise signal. It is here presented a Data Acquisition System, composed of a Delta-Sigma-like Modulator and an antenna, that is the core of a portable low-complexity radio system; the amplifier is designed in order to interface the data acquisition system with a sensor that acquires the electrical signal. The Modulator asynchronously acquires and samples human muscle activity, by sending a Quasi-Digital pattern that encodes the acquired signal. There is only a minor loss of information translating the muscle activity using this pattern, compared to an encoding technique which uses astandard digital signal via Impulse-Radio Ultra-Wide Band (IR-UWB). The biological signals, needed for Electromyographic analysis, have an amplitude of 10-100μV and need to be highly amplified and separated from the overwhelming 50mV common mode noise signal. Various tests of the firmness of the concept are presented, as well the proof that the design works even with different sensors, such as Radiation measurement for Dosimetry studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.