3 resultados para critical and ethical thinking
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis examines the state of audiovisual translation (AVT) in the aftermath of the COVID-19 emergency, highlighting new trends with regards to the implementation of AI technologies as well as their strengths, constraints, and ethical implications. It starts with an overview of the current AVT landscape, focusing on future projections about its evolution and its critical aspects such as the worsening working conditions lamented by AVT professionals – especially freelancers – in recent years and how they might be affected by the advent of AI technologies in the industry. The second chapter delves into the history and development of three AI technologies which are used in combination with neural machine translation in automatic AVT tools: automatic speech recognition, speech synthesis and deepfakes (voice cloning and visual deepfakes for lip syncing), including real examples of start-up companies that utilize them – or are planning to do so – to localize audiovisual content automatically or semi-automatically. The third chapter explores the many ethical concerns around these innovative technologies, which extend far beyond the field of translation; at the same time, it attempts to revindicate their potential to bring about immense progress in terms of accessibility and international cooperation, provided that their use is properly regulated. Lastly, the fourth chapter describes two experiments, testing the efficacy of the currently available tools for automatic subtitling and automatic dubbing respectively, in order to take a closer look at their perks and limitations compared to more traditional approaches. This analysis aims to help discerning legitimate concerns from unfounded speculations with regards to the AI technologies which are entering the field of AVT; the intention behind it is to humbly suggest a constructive and optimistic view of the technological transformations that appear to be underway, whilst also acknowledging their potential risks.
Resumo:
Additive Manufacturing (AM), also known as “3D printing”, is a recent production technique that allows the creation of three-dimensional elements by depositing multiple layers of material. This technology is widely used in various industrial sectors, such as automotive, aerospace and aviation. With AM, it is possible to produce particularly complex elements for which traditional techniques cannot be used. These technologies are not yet widespread in the civil engineering sector, which is slowly changing thanks to the advantages of AM, such as the possibility of realizing elements without geometric restrictions, with less material usage and a higher efficiency, in particular employing Wire-and-Arc Additive Manufacturing (WAAM) technology. Buildings that benefit most from AM are all those structures designed using form-finding and free-form techniques. These include gridshells, where joints are the most critical and difficult elements to design, as the overall behaviour of the structure depends on them. It must also be considered that, during the design, the engineer must try to minimize the structure's own weight. Self-weight reductions can be achieved by Topological Optimization (TO) of the joint itself, which generates complex geometries that could not be made using traditional techniques. To sum up, weight reductions through TO combined with AM allow for several potential benefits, including economic ones. In this thesis, the roof of the British Museum is considered as a case study, analysing the gridshell structure of which a joint will be chosen to be designed and manufactured, using TO and WAAM techniques. Then, the designed joint will be studied in order to understand its structural behaviour in terms of stiffness and strength. Finally, a printing test will be performed to assess the production feasibility using WAAM technology. The computational design and fabrication stages were carried out at Technische Universität Braunschweig in Germany.
Resumo:
The primary goal of this thesis is to verify the rupture disc sizing of the acrylic reactor. Primarily the test to check the sizing was divided into several stages. It went on to examine ideas to explain the concern and ethical ways, as well as remedies and suggestions to solve the issues and difficulties that were discovered. This thesis will highlight the gathering and arranging of reaction data (recipe composition, enthalpies, reaction temperature, and catalyst feeding times) of the products to be chosen, in accordance with pre-established criteria. To collaborate with the research and development team in the lab to carry out calorimetric testing for the important recipes that have been identified. The verification of the currently installed Rupture Discs in the plant based on the calorimetric test findings is the final stage. This thesis used two separate calorimetry techniques: Phi-TEC II adiabatic calorimetry and differential scanning calorimetry (DSC). The target of the experiment is to check and confirm the correct size of the reactor rupture disc. Arkema (Boretto/Coatex) plant (Emilia romagna) provided a recipe and a scenario following multiple meetings and discussions. The purpose of this technical paper is to describe the outcomes of adiabatic calorimetry performed at the lab scale so that the computation of the vents for a particular recipe and scenario can be verified.