3 resultados para criminal control policy
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis project studies the agent identity privacy problem in the scalar linear quadratic Gaussian (LQG) control system. For the agent identity privacy problem in the LQG control, privacy models and privacy measures have to be established first. It depends on a trajectory of correlated data rather than a single observation. I propose here privacy models and the corresponding privacy measures by taking into account the two characteristics. The agent identity is a binary hypothesis: Agent A or Agent B. An eavesdropper is assumed to make a hypothesis testing on the agent identity based on the intercepted environment state sequence. The privacy risk is measured by the Kullback-Leibler divergence between the probability distributions of state sequences under two hypotheses. By taking into account both the accumulative control reward and privacy risk, an optimization problem of the policy of Agent B is formulated. The optimal deterministic privacy-preserving LQG policy of Agent B is a linear mapping. A sufficient condition is given to guarantee that the optimal deterministic privacy-preserving policy is time-invariant in the asymptotic regime. An independent Gaussian random variable cannot improve the performance of Agent B. The numerical experiments justify the theoretic results and illustrate the reward-privacy trade-off. Based on the privacy model and the LQG control model, I have formulated the mathematical problems for the agent identity privacy problem in LQG. The formulated problems address the two design objectives: to maximize the control reward and to minimize the privacy risk. I have conducted theoretic analysis on the LQG control policy in the agent identity privacy problem and the trade-off between the control reward and the privacy risk.Finally, the theoretic results are justified by numerical experiments. From the numerical results, I expected to have some interesting observations and insights, which are explained in the last chapter.
Resumo:
Nella letteratura economica e di teoria dei giochi vi è un dibattito aperto sulla possibilità di emergenza di comportamenti anticompetitivi da parte di algoritmi di determinazione automatica dei prezzi di mercato. L'obiettivo di questa tesi è sviluppare un modello di reinforcement learning di tipo actor-critic con entropy regularization per impostare i prezzi in un gioco dinamico di competizione oligopolistica con prezzi continui. Il modello che propongo esibisce in modo coerente comportamenti cooperativi supportati da meccanismi di punizione che scoraggiano la deviazione dall'equilibrio raggiunto a convergenza. Il comportamento di questo modello durante l'apprendimento e a convergenza avvenuta aiuta inoltre a interpretare le azioni compiute da Q-learning tabellare e altri algoritmi di prezzo in condizioni simili. I risultati sono robusti alla variazione del numero di agenti in competizione e al tipo di deviazione dall'equilibrio ottenuto a convergenza, punendo anche deviazioni a prezzi più alti.
Resumo:
Today more than ever, with the recent war in Ukraine and the increasing number of attacks that affect systems of nations and companies every day, the world realizes that cybersecurity can no longer be considered just as a “cost”. It must become a pillar for our infrastructures that involve the security of our nations and the safety of people. Critical infrastructure, like energy, financial services, and healthcare, have become targets of many cyberattacks from several criminal groups, with an increasing number of resources and competencies, putting at risk the security and safety of companies and entire nations. This thesis aims to investigate the state-of-the-art regarding the best practice for securing Industrial control systems. We study the differences between two security frameworks. The first is Industrial Demilitarized Zone (I-DMZ), a perimeter-based security solution. The second one is the Zero Trust Architecture (ZTA) which removes the concept of perimeter to offer an entirely new approach to cybersecurity based on the slogan ‘Never Trust, always verify’. Starting from this premise, the Zero Trust model embeds strict Authentication, Authorization, and monitoring controls for any access to any resource. We have defined two architectures according to the State-of-the-art and the cybersecurity experts’ guidelines to compare I-DMZ, and Zero Trust approaches to ICS security. The goal is to demonstrate how a Zero Trust approach dramatically reduces the possibility of an attacker penetrating the network or moving laterally to compromise the entire infrastructure. A third architecture has been defined based on Cloud and fog/edge computing technology. It shows how Cloud solutions can improve the security and reliability of infrastructure and production processes that can benefit from a range of new functionalities, that the Cloud could offer as-a-Service.We have implemented and tested our Zero Trust solution and its ability to block intrusion or attempted attacks.