2 resultados para costs on indemnity basis
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
We need a large amount of energy to make our homes pleasantly warm in winter and cool in summer. If we also consider the energy losses that occur through roofs, perimeter walls and windows, it would be more appropriate to speak of waste than consumption. The solution would be to build passive houses, i.e. buildings more efficient and environmentally friendly, able to ensure a drastic reduction of electricity and heating bills. Recently, the increase of public awareness about global warming and environmental pollution problems have “finally” opened wide possibility in the field of sustainable construction by encouraging new renewable methods for heating and cooling space. Shallow geothermal allows to exploit the renewable heat reservoir, present in the soil at depths between 15 and 20 m, for air-conditioning of buildings, using a ground source heat pump. This thesis focuses on the design of an air-conditioning system with geothermal heat pump coupled to energy piles, i.e. piles with internal heat exchangers, for a typical Italian-family building, on the basis of a geological-technical report about a plot of Bologna’s plain provided by Geo-Net s.r.l. The study has involved a preliminary static sizing of the piles in order to calculate their length and number, then the project was completed making the energy sizing, where it has been verified if the building energy needs were met with the static solution obtained. Finally the attention was focused on the technical and economical validity compared to a traditional system (cost-benefit analysis) and on the problem of the uncertainty data design and their effects on the operating and initial costs of the system (sensitivity analysis). To evaluate the performance of the thermal system and the potential use of the piles was also used the PILESIM2 software, designed by Dr. Pahud of the SUPSI’s school.
Resumo:
Waste management is becoming, year after year, always more important both for the costs associated with it and for the ever increasing volumes of waste generated. The discussion on the fate of organic fraction of municipal solid waste (OFMSW) leads everyday to new solutions. Many alternatives are proposed, ranging from incineration to composting passing through anaerobic digestion. “For Biogas” is a collaborative effort, between C.I.R.S.A. and R.E.S. cooperative, whose main goal is to generate “green” energy from both biowaste and sludge anaerobic co-digestion. Specifically, the project include a pilot plant receiving dewatered sludge from both urban and agro-industrial sewage (DS) and the organic fraction of MSW (in 2/1 ratio) which is digested in absence of oxygen to produce biogas and digestate. Biogas is piped to a co-generation system producing power and heat reused in the digestion process itself, making it independent from the national grid. Digestate undergoes a process of mechanical separation giving a liquid fraction, introduced in the treatment plant, and a solid fraction disposed in landfill (in future it will be further processed to obtain compost). This work analyzed and estimated the impacts generated by the pilot plant in its operative phase. Once the model was been characterized, on the basis of the CML2001 methodology, a comparison is made with the present scenario assumed for OFMSW and DS. Actual scenario treats separately the two fractions: the organic one is sent to a composting plant, while sludge is sent to landfill. Results show that the most significant difference between the two scenarios is in the GWP category as the project "For Biogas" is able to generate “zero emission” power and heat. It also generates a smaller volume of waste for disposal. In conclusion, the analysis evaluated the performance of two alternative methods of management of OFMSW and DS, highlighting that "For Biogas" project is to be preferred to the actual scenario.