4 resultados para cosmology: large-scale structure of Universe
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Uno dei più importanti campi di ricerca che coinvolge gli astrofisici è la comprensione della Struttura a Grande Scala dell'universo. I principi della Formazione delle Strutture sono ormai ben saldi, e costituiscono la base del cosiddetto "Modello Cosmologico Standard". Fino agli inizi degli anni 2000, la teoria che spiegava con successo le proprietà statistiche dell'universo era la cosiddetta "Teoria Perturbativa Standard". Attraverso simulazioni numeriche e osservazioni di qualità migliore, si è evidenziato il limite di quest'ultima teoria nel descrivere il comportamento dello spettro di potenza su scale oltre il regime lineare. Ciò spinse i teorici a trovare un nuovo approccio perturbativo, in grado di estendere la validità dei risultati analitici. In questa Tesi si discutono le teorie "Renormalized Perturbation Theory"e"Multipoint Propagator". Queste nuove teorie perturbative sono la base teorica del codice BisTeCca, un codice numerico originale che permette il calcolo dello spettro di potenza a 2 loop e del bispettro a 1 loop in ordine perturbativo. Come esempio applicativo, abbiamo utilizzato BisTeCca per l'analisi dei bispettri in modelli di universo oltre la cosmologia standard LambdaCDM, introducendo una componente di neutrini massicci. Si mostrano infine gli effetti su spettro di potenza e bispettro, ottenuti col nostro codice BisTeCca, e si confrontano modelli di universo con diverse masse di neutrini.
Resumo:
The mass estimation of galaxy clusters is a crucial point for modern cosmology, and can be obtained by several different techniques. In this work we discuss a new method to measure the mass of galaxy clusters connecting the gravitational potential of the cluster with the kinematical properties of its surroundings. We explore the dynamics of the structures located in the region outside virialized cluster, We identify groups of galaxies, as sheets or filaments, in the cluster outer region, and model how the cluster gravitational potential perturbs the motion of these structures from the Hubble fow. This identification is done in the redshift space where we look for overdensities with a filamentary shape. Then we use a radial mean velocity profile that has been found as a quite universal trend in simulations, and we fit the radial infall velocity profile of the overdensities found. The method has been tested on several cluster-size haloes from cosmological N-body simulations giving results in very good agreement with the true values of virial masses of the haloes and orientation of the sheets. We then applied the method to the Coma cluster and even in this case we found a good correspondence with previous. It is possible to notice a mass discrepancy between sheets with different alignments respect to the center of the cluster. This difference can be used to reproduce the shape of the cluster, and to demonstrate that the spherical symmetry is not always a valid assumption. In fact, if the cluster is not spherical, sheets oriented along different axes should feel a slightly different gravitational potential, and so give different masses as result of the analysis described before. Even this estimation has been tested on cosmological simulations and then applied to Coma, showing the actual non-sphericity of this cluster.
Resumo:
The Standard Cosmological Model is generally accepted by the scientific community, there are still an amount of unresolved issues. From the observable characteristics of the structures in the Universe,it should be possible to impose constraints on the cosmological parameters. Cosmic Voids (CV) are a major component of the LSS and have been shown to possess great potential for constraining DE and testing theories of gravity. But a gap between CV observations and theory still persists. A theoretical model for void statistical distribution as a function of size exists (SvdW) However, the SvdW model has been unsuccesful in reproducing the results obtained from cosmological simulations. This undermines the possibility of using voids as cosmological probes. The goal of our thesis work is to cover the gap between theoretical predictions and measured distributions of cosmic voids. We develop an algorithm to identify voids in simulations,consistently with theory. We inspecting the possibilities offered by a recently proposed refinement of the SvdW (the Vdn model, Jennings et al., 2013). Comparing void catalogues to theory, we validate the Vdn model, finding that it is reliable over a large range of radii, at all the redshifts considered and for all the cosmological models inspected. We have then searched for a size function model for voids identified in a distribution of biased tracers. We find that, naively applying the same procedure used for the unbiased tracers to a halo mock distribution does not provide success- full results, suggesting that the Vdn model requires to be reconsidered when dealing with biased samples. Thus, we test two alternative exten- sions of the model and find that two scaling relations exist: both the Dark Matter void radii and the underlying Dark Matter density contrast scale with the halo-defined void radii. We use these findings to develop a semi-analytical model which gives promising results.
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.