5 resultados para control the position

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work of this thesis is on the implementation of a variable stiffness joint antagonistically actuated by a couple of twisted-string actuator (TSA). This type of joint is possible to be applied in the field of robotics, like UB Hand IV (the anthropomorphic robotic hand developed by University of Bologna). The purposes of the activities are to build the joint dynamic model and simultaneously control the position and stiffness. Three different control approaches (Feedback linearization, PID, PID+Feedforward) are proposed and validated in simulation. To improve the properties of joint stiffness, a joint with elastic element is taken into account and discussed. To the end, the experimental setup that has been developed for the experimental validation of the proposed control approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a Hardware-in-the-loop test bench is designed. The bench is used to test the behaviour of an electronic control unit used in Maserati to control the dynamics of an air spring system. First the mathematical model of the plant has been defined, then the simulation enviroment and the test environment have been set up. The performed tests succesfully highlighted some bugs in the device under test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing interest in the decarbonization process led to a rapidly growing trend of electrification strategies in the automotive industry. In particular, OEMs are pushing towards the development and production of efficient electric vehicles. Moreover, research on electric motors and their control are exploding in popularity. The increase of computational power in embedded control hardware is allowing the development of new control algorithm, such as sensorless control strategy. Such control strategy allows the reduction of the number of sensors, which implies reduced costs and increased system reliability. The thesis objective is to realize a sensorless control for high-performance automotive motors. Several algorithms for rotor angle observers are implemented in the MATLAB and Simulink environment, with emphasis on the Kalman observer. One of the Kalman algorithms already available in the literature has been selected, implemented and benchmarked, with emphasis on its comparison with the Sliding Mode observer. Different models characterized by increasing levels of complexity are simulated. A simplified synchronous motor with ”constant parameters”, controlled by an ideal inverter is first analyzed; followed by a complete model defined by real motor maps, and controlled by a switching inverter. Finally, it was possible to test the developed algorithm on a real electric motor mounted on a test bench. A wide range of different electric motors have been simulated, which led to an exhaustive review of the sensorless control algorithm. The final results underline the capability of the Kalman observer to effectively control the motor on a real test bench.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In collaboration with G.D. SpA I attended an internship with the purpose of developing a filter for the position control of industrial machines during testing and maintenance operations. The filter elaborates a signal in position provided by an electonic handwheel, in order to enable the application to be controlled with a signal in velocity with arbitrarily dynamics chosen during the design phase. Limiting the dynamics of the filter provide a more stable and less demanding reference trajectory which reduce the vibrations and tracking errors of the motor controlled by it. It also prevents misusages of the handwheel from the technician which could end up in harmful interferences between the mechanical parts moved by the handwheel.