2 resultados para construction waste

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, an important world’s population growth forecast establish that an increase of 2 billion people is expected by 2050. (UN,2019). This increment of people worldwide involves more humans, as well as growth of the demand for the construction of new residential, institutional, industrial, and infrastructural areas, prompting to a higher consumption of natural resources as required for construction materials. In addition, an effect of this population growth is the production and accumulation of waste causing a serious environmental and economic issue around the world. As an alternative to just producing more waste at the final stage of a building, house, road, among other concrete-based structures, adequate techniques must be applied for recycling and reusing these potential materials. The main priority of the thesis is to foment and evaluate the sustainable construction work leading to environmental-friendly actions that promote the reuse and recycling of construction waste, focusing on the use of construction recycled construction materials as an alternative for sub-base and base of road structure application. This thesis is committed to the analysis of the several laboratory tests carried out for achieving the physical-mechanical properties of the studied materials (recycled concrete aggregates + reclaimed asphalt pavement (RCA+RAP) and stabilized crushed sleepers). All these tests have been carried out in the Laboratory of Roads from the University of Bologna and in the experimental site in CAR srl., at Imola. The results are reported in tables, graphs, and are discussed. The mechanical properties values obtained from the laboratory tests are analysed and compared with standard values declared in the Italian and European normative for roads construction and to the results obtained from in-situ tests in the experimentation field (CAR srl in Imola) with the same materials. This to analyse the performance of them under natural conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.