3 resultados para constraint satisfaction problem
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.
Resumo:
In this thesis, a tube-based Distributed Economic Predictive Control (DEPC) scheme is presented for a group of dynamically coupled linear subsystems. These subsystems are components of a large scale system and control inputs are computed based on optimizing a local economic objective. Each subsystem is interacting with its neighbors by sending its future reference trajectory, at each sampling time. It solves a local optimization problem in parallel, based on the received future reference trajectories of the other subsystems. To ensure recursive feasibility and a performance bound, each subsystem is constrained to not deviate too much from its communicated reference trajectory. This difference between the plan trajectory and the communicated one is interpreted as a disturbance on the local level. Then, to ensure the satisfaction of both state and input constraints, they are tightened by considering explicitly the effect of these local disturbances. The proposed approach averages over all possible disturbances, handles tightened state and input constraints, while satisfies the compatibility constraints to guarantee that the actual trajectory lies within a certain bound in the neighborhood of the reference one. Each subsystem is optimizing a local arbitrary economic objective function in parallel while considering a local terminal constraint to guarantee recursive feasibility. In this framework, economic performance guarantees for a tube-based distributed predictive control (DPC) scheme are developed rigorously. It is presented that the closed-loop nominal subsystem has a robust average performance bound locally which is no worse than that of a local robust steady state. Since a robust algorithm is applying on the states of the real (with disturbances) subsystems, this bound can be interpreted as an average performance result for the real closed-loop system. To this end, we present our outcomes on local and global performance, illustrated by a numerical example.
Resumo:
Combinatorial decision and optimization problems belong to numerous applications, such as logistics and scheduling, and can be solved with various approaches. Boolean Satisfiability and Constraint Programming solvers are some of the most used ones and their performance is significantly influenced by the model chosen to represent a given problem. This has led to the study of model reformulation methods, one of which is tabulation, that consists in rewriting the expression of a constraint in terms of a table constraint. To apply it, one should identify which constraints can help and which can hinder the solving process. So far this has been performed by hand, for example in MiniZinc, or automatically with manually designed heuristics, in Savile Row. Though, it has been shown that the performances of these heuristics differ across problems and solvers, in some cases helping and in others hindering the solving procedure. However, recent works in the field of combinatorial optimization have shown that Machine Learning (ML) can be increasingly useful in the model reformulation steps. This thesis aims to design a ML approach to identify the instances for which Savile Row’s heuristics should be activated. Additionally, it is possible that the heuristics miss some good tabulation opportunities, so we perform an exploratory analysis for the creation of a ML classifier able to predict whether or not a constraint should be tabulated. The results reached towards the first goal show that a random forest classifier leads to an increase in the performances of 4 different solvers. The experimental results in the second task show that a ML approach could improve the performance of a solver for some problem classes.