2 resultados para concentration quenching model
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Particle concentration is a principal factor that affects erosion rate of solid surfaces under particle impact, such as pipe bends in pneumatic conveyors; it is well known that a reduction in the specific erosion rate occurs under high particle concentrations, a phenomenon referred to as the “shielding effect”. The cause of shielding is believed to be increased likelihood of inter-particulate collisions, the high collision probability between incoming and rebounding particles reducing the frequency and the severity of particle impacts on the target surface. In this study, the effects of particle concentration on erosion of a mild steel bend surface have been investigated in detail using three different particulate materials on an industrial scale pneumatic conveying test rig. The materials were studied so that two had the same particle density but very different particle size, whereas two had very similar particle size but very different particle density. Experimental results confirm the shielding effect due to high particle concentration and show that the particle density has a far more significant influence than the particle size, on the magnitude of the shielding effect. A new method of correcting for change in erosivity of the particles in repeated handling, to take this factor out of the data, has been established, and appears to be successful. Moreover, a novel empirical model of the shielding effects has been used, in term of erosion resistance which appears to decrease linearly when the particle concentration decreases. With the model it is possible to find the specific erosion rate when the particle concentration tends to zero, and conversely predict how the specific erosion rate changes at finite values of particle concentration; this is critical to enable component life to be predicted from erosion tester results, as the variation of the shielding effect with concentration is different in these two scenarios. In addition a previously unreported phenomenon has been recorded, of a particulate material whose erosivity has steadily increased during repeated impacts.
Resumo:
The shallow water configuration of the gulf of Trieste allows the propagation of the stress due to wind and waves along the whole water column down to the bottom. When the stress overcomes a particular threshold it produces resuspension processes of the benthic detritus. The benthic sediments in the North Adriatic are rich of organic matter, transported here by many rivers. This biological active particulate, when remaining in the water, can be transported in all the Adriatic basin by the basin-wide circulation. In this work is presented a first implementation of a resuspension/deposition submodel in the oceanographic coupled physical-biogeochemical 1-dimensional numerical model POM-BFM. At first has been considered the only climatological wind stress forcing, next has been introduced, on the surface, an annual cycle of wave motion and finally have been imposed some exceptional wave event in different periods of the year. The results show a strong relationship between the efficiency of the resuspension process and the stratification of the water column. During summer the strong stratification can contained a great quantity of suspended matter near to the bottom, while during winter even a low concentration of particulate can reach the surface and remains into the water for several months without settling and influencing the biogeochemical system. Looking at the biologic effects, the organic particulate, injected in the water column, allow a sudden growth of the pelagic bacteria which competes with the phytoplankton for nutrients strongly inhibiting its growth. This happen especially during summer when the suspended benthic detritus concentration is greater.